Files
EasyAi/src/main/java/org/dromara/easyai/nerveEntity/HiddenNerve.java

97 lines
4.1 KiB
Java
Raw Normal View History

2025-09-04 14:08:46 +08:00
package org.dromara.easyai.nerveEntity;
import org.dromara.easyai.entity.ThreeChannelMatrix;
import org.dromara.easyai.i.CustomEncoding;
import org.dromara.easyai.matrixTools.Matrix;
import org.dromara.easyai.matrixTools.MatrixList;
import org.dromara.easyai.matrixTools.MatrixOperation;
import org.dromara.easyai.i.ActiveFunction;
import org.dromara.easyai.i.OutBack;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
/**
* @author lidapeng
* 隐层神经元
* @date 9:30 上午 2019/12/21
*/
public class HiddenNerve extends Nerve {
private final boolean isConvFinish;//卷积最后一层
private final MatrixOperation matrixOperation = new MatrixOperation();
public HiddenNerve(int id, int depth, int upNub, int downNub, float studyPoint,
boolean init, ActiveFunction activeFunction, boolean isDynamic, int rzType, float lParam
, int kernLen, int matrixX, int matrixY, boolean isConvFinish, int coreNumber, int channelNo, float oneConvStudy, boolean norm
, CustomEncoding customEncoding, float gaMa, float gMaxTh, boolean auTo, float GRate) throws Exception {//隐层神经元
super(id, upNub, "HiddenNerve", downNub, studyPoint,
init, activeFunction, isDynamic, rzType, lParam, kernLen, depth, matrixX, matrixY
, coreNumber, channelNo, oneConvStudy, norm, customEncoding, gaMa, gMaxTh, auTo, GRate);
this.isConvFinish = isConvFinish;
}
@Override
public void input(long eventId, float parameter, boolean isKernelStudy, Map<Integer, Float> E
, OutBack outBack) throws Exception {//接收上一层的输入
boolean allReady = insertParameter(eventId, parameter);
if (allReady) {//参数齐了,开始计算 sigma - threshold
float sigma = calculation(eventId);
float out = activeFunction.function(sigma);//激活函数输出数值
if (isKernelStudy) {
outNub = out;
} else {
destoryParameter(eventId);
}
sendMessage(eventId, out, isKernelStudy, E, outBack);
}
}
@Override
protected void inputMatrixFeature(long eventId, List<Float> parameters, boolean isStudy, Map<Integer, Float> E, OutBack imageBack) throws Exception {
insertParameters(eventId, parameters);
float sigma = calculation(eventId);
float out = activeFunction.function(sigma);//激活函数输出数值
if (isStudy) {
outNub = out;
} else {
destoryParameter(eventId);
}
sendMessage(eventId, out, isStudy, E, imageBack);
}
@Override
protected void inputMatrix(long eventId, List<Matrix> matrix, boolean isStudy
, Map<Integer, Float> E, OutBack outBack, boolean needMatrix) throws Exception {
List<Matrix> myMatrix = conv(matrix);//处理过的矩阵
if (isConvFinish) {
Matrix ourMatrix;
if (myMatrix.size() == 1) {
ourMatrix = myMatrix.get(0);
} else {
MatrixList matrixList = new MatrixList(myMatrix.get(0), true, 100);
for (int i = 1; i < myMatrix.size(); i++) {
matrixList.add(myMatrix.get(i));
}
ourMatrix = matrixList.getMatrix();
}
if (!isStudy && needMatrix) {
outBack.getBackMatrix(ourMatrix, getId(), eventId);
}
sendMatrixList(eventId, matrixOperation.matrixToList(ourMatrix), isStudy, E, outBack);
} else {
sendMatrix(eventId, myMatrix, isStudy, E, outBack, needMatrix);
}
}
@Override
protected void inputThreeChannelMatrix(long eventId, ThreeChannelMatrix picture, boolean isKernelStudy, Map<Integer, Float> E, OutBack outBack, boolean needMatrix) throws Exception {
//接收三通道矩阵
List<Matrix> matrixList = new ArrayList<>();
matrixList.add(picture.getMatrixR());
matrixList.add(picture.getMatrixG());
matrixList.add(picture.getMatrixB());
demRedByMatrixList(eventId, matrixList, isKernelStudy, E, outBack, needMatrix);
}
}