diff --git a/src/main/java/org/dromara/easyai/pso/PSO.java b/src/main/java/org/dromara/easyai/pso/PSO.java new file mode 100644 index 0000000..ffd7a95 --- /dev/null +++ b/src/main/java/org/dromara/easyai/pso/PSO.java @@ -0,0 +1,201 @@ +package org.dromara.easyai.pso; + +import org.dromara.easyai.i.PsoFunction; + +import java.util.ArrayList; +import java.util.List; +import java.util.Random; + +/** + * @param + * @DATA + * @Author LiDaPeng + * @Description 粒子群 + */ +public class PSO { + private float globalValue = -1;//当前全局最优值 + private int times;//迭代次数 + private List allPar = new ArrayList<>();//全部粒子集合 + private PsoFunction psoFunction;//粒子群执行函数 + private float inertialFactor = 0.5f;//惯性因子 + private float selfStudyFactor = 2;//个体学习因子 + private float socialStudyFactor = 2;//社会学习因子 + private boolean isMax;//取最大值还是最小值 + private float[] allBest;//全局最佳位置 + private Random random = new Random(); + private float[] minBorder, maxBorder; + private float maxSpeed; + private float initSpeed;//初始速度 + /** + * 初始化 + * + * @param dimensionNub 维度 + * @param minBorder 最小边界 + * @param maxBorder 最大边界 + * @param times 迭代次数 + * @param particleNub 粒子数量 + * @param psoFunction 适应函数 + * @param inertialFactor 惯性因子 + * @param selfStudyFactor 个体学习因子 + * @param socialStudyFactor 社会学习因子 + * @param isMax 最大值是否为最优 + * @param maxSpeed 最大速度 + * @param initSpeed 初始速度 + * @throws Exception + */ + public PSO(int dimensionNub, float[] minBorder, float[] maxBorder, + int times, int particleNub, PsoFunction psoFunction, + float inertialFactor, float selfStudyFactor, float socialStudyFactor + , boolean isMax, float maxSpeed, float initSpeed) { + this.initSpeed = initSpeed; + this.times = times; + this.psoFunction = psoFunction; + this.isMax = isMax; + allBest = new float[dimensionNub]; + this.minBorder = minBorder; + this.maxBorder = maxBorder; + this.maxSpeed = maxSpeed; + if (inertialFactor > 0) { + this.inertialFactor = inertialFactor; + } + if (selfStudyFactor >= 0 && selfStudyFactor <= 4) { + this.selfStudyFactor = selfStudyFactor; + } + if (socialStudyFactor >= 0 && socialStudyFactor <= 4) { + this.socialStudyFactor = socialStudyFactor; + } + for (int i = 0; i < particleNub; i++) {//初始化生成粒子群 + Particle particle = new Particle(dimensionNub); + allPar.add(particle); + } + + } + + public float[] getAllBest() { + return allBest; + } + + public void setAllPar(List allPar) {//外置粒子群注入 + this.allPar = allPar; + } + + public void start() throws Exception {//开始进行迭代 + int size = allPar.size(); + for (int i = 0; i < times; i++) { + for (int j = 0; j < size; j++) { + move(allPar.get(j), j); + } + } + //粒子群移动结束 + // draw("/Users/lidapeng/Desktop/test/testOne/e2.jpg", fatherX, fatherY); + } + + private void move(Particle particle, int id) throws Exception {//粒子群开始移动 + float[] parameter = particle.getParameter();//当前粒子的位置 + BestData[] bestData = particle.bestDataArray;//该粒子的信息 + float value = psoFunction.getResult(parameter, id); + float selfValue = particle.selfBestValue;//局部最佳值 + if (isMax) {//取最大值 + if (value > globalValue) {//更新全局最大值 + globalValue = value; + //更新全局最佳位置 + for (int i = 0; i < allBest.length; i++) { + allBest[i] = parameter[i]; + } + } + if (value > selfValue) {//更新局部最大值 + particle.selfBestValue = value; + //更新局部最佳位置 + for (int i = 0; i < bestData.length; i++) { + bestData[i].selfBestPosition = parameter[i]; + } + } + } else {//取最小值 + if (globalValue < 0 || value < globalValue) {//更新全局最小值 + globalValue = value; + //更新全局最佳位置 + for (int i = 0; i < allBest.length; i++) { + allBest[i] = parameter[i]; + } + } + if (selfValue < 0 || value < selfValue) {//更新全局最小值 + particle.selfBestValue = value; + //更新局部最佳位置 + for (int i = 0; i < bestData.length; i++) { + bestData[i].selfBestPosition = parameter[i]; + } + } + } + //先更新粒子每个维度的速度 + for (int i = 0; i < bestData.length; i++) { + float speed = bestData[i].speed;//当前维度的速度 + float pid = bestData[i].selfBestPosition;//当前自己的最佳位置 + float selfPosition = parameter[i];//当前自己的位置 + float pgd = allBest[i];//当前维度的全局最佳位置 + //当前维度更新后的速度 + speed = inertialFactor * speed + selfStudyFactor * random.nextFloat() * (pid - selfPosition) + + socialStudyFactor * random.nextFloat() * (pgd - selfPosition); + if ((float)Math.abs(speed) > maxSpeed) { + if (speed > 0) { + speed = maxSpeed; + } else { + speed = -maxSpeed; + } + } + bestData[i].speed = speed; + //更新该粒子该维度新的位置 + float position = selfPosition + speed; + if (minBorder != null) { + if (position < minBorder[i]) { + position = minBorder[i]; + } + if (position > maxBorder[i]) { + position = maxBorder[i]; + } + } + bestData[i].selfPosition = position; + } + } + + class Particle {//粒子 + private BestData[] bestDataArray; + private float selfBestValue = -1;//自身最优的值 + + private float[] getParameter() {//获取粒子位置信息 + float[] parameter = new float[bestDataArray.length]; + for (int i = 0; i < parameter.length; i++) { + parameter[i] = bestDataArray[i].selfPosition; + } + return parameter; + } + + protected Particle(int dimensionNub) {//初始化随机位置 + bestDataArray = new BestData[dimensionNub]; + for (int i = 0; i < dimensionNub; i++) { + float position; + if (minBorder != null && maxBorder != null) { + float min = minBorder[i]; + float max = maxBorder[i]; + float region = max - min + 1; + position = random.nextInt((int) region) + min;//初始化该维度的位置 + } else { + position = random.nextFloat(); + } + bestDataArray[i] = new BestData(position, initSpeed); + } + } + } + + class BestData {//数据保存 + + private BestData(float selfPosition, float initSpeed) { + this.selfBestPosition = selfPosition; + this.selfPosition = selfPosition; + speed = initSpeed; + } + + private float speed;//该粒子当前维度的速度 + private float selfBestPosition;//当前维度自身最优的历史位置/自己最优位置的值 + private float selfPosition;//当前维度自己现在的位置/也就是当前维度自己的值 + } +}