This commit is contained in:
2025-09-04 14:09:07 +08:00
parent 53d9740e2c
commit 38d104c9e6

View File

@@ -0,0 +1,302 @@
package org.dromara.easyai.entity;
import org.dromara.easyai.matrixTools.Matrix;
import org.dromara.easyai.tools.RgbRegression;
import java.util.*;
public class RGBNorm {
private float[] rgbAll;
private float norm;
private int nub;
private float[] rgb;//均值
private float[] rgbUp;
private List<float[]> rgbs = new ArrayList<>();//需要对它进行排序
private List<Float> powers = new ArrayList<>();//需要对它进行排序
private RgbRegression rgbRegression;
private int len;
private float varAll = 1;
private Matrix avgMatrix;//均值矩阵
private Matrix varMatrix;//方差矩阵
private float gmParameter;//gm混合系数
private float probabilitySigma = 0;//后验概率求和
public float getVarAll() {
return varAll;
}
public Matrix getAvgMatrix() {
return avgMatrix;
}
public Matrix getVarMatrix() {
return varMatrix;
}
public List<float[]> getRgbs() {
return rgbs;
}
public RgbRegression getRgbRegression() {
return rgbRegression;
}
public void setRgbRegression(RgbRegression rgbRegression) {
this.rgbRegression = rgbRegression;
}
public RGBNorm(float[] rgb, int len) {
this.len = len;
rgbAll = new float[len];
this.rgb = new float[len];
this.rgbUp = rgb;
gmParameter = new Random().nextFloat();
}
public RGBNorm() {
}
public void syn() {
rgbUp = rgb;
}
public void clearRGB() {
probabilitySigma = 0;
rgbs.clear();
powers.clear();
}
//特征及权重
public void setGmFeature(float[] feature, float probability) {
rgbs.add(feature);
powers.add(probability);
probabilitySigma = probability + probabilitySigma;
}
public void clear() {
rgbAll = new float[len];
nub = 0;
for (int i = 0; i < rgb.length; i++) {
rgbUp[i] = rgb[i];
}
rgbs.clear();
//System.out.println("clear==" + Arrays.toString(rgbUp));
}
public int getNub() {
return nub;
}
public boolean compare() {
boolean isNext = false;
for (int i = 0; i < rgb.length; i++) {
if (rgb[i] != rgbUp[i]) {
isNext = true;
break;
}
}
return isNext;
}
public float getEDist(float[] x) {
float[] y = new float[x.length];
for (int i = 0; i < y.length; i++) {
y[i] = x[i] - rgbUp[i];
}
float sigma = 0;
for (int i = 0; i < y.length; i++) {
sigma = sigma + (float)Math.pow(y[i], 2);
}
return (float)Math.sqrt(sigma);
}
public void setColor(float[] rgb) {
for (int i = 0; i < rgb.length; i++) {
rgbAll[i] = rgbAll[i] + rgb[i];
}
rgbs.add(rgb);
nub++;
}
private Matrix average(Matrix matrix) throws Exception {//计算平均值
int x = matrix.getX();
int y = matrix.getY();
Matrix avgMatrix = new Matrix(x, 1);
boolean isPower = powers.size() > 1;
for (int i = 0; i < x; i++) {
for (int j = 0; j < y; j++) {
float power;
if (!isPower) {
power = 1;
} else {
power = powers.get(j);
}
float nub = avgMatrix.getNumber(i, 0) + matrix.getNumber(i, j) * power;
avgMatrix.setNub(i, 0, nub);
}
}
for (int i = 0; i < x; i++) {
float nub;
if (probabilitySigma > 0) {
nub = avgMatrix.getNumber(i, 0) / probabilitySigma;
} else {
nub = avgMatrix.getNumber(i, 0) / y;
}
avgMatrix.setNub(i, 0, nub);
}
return avgMatrix;
}
private Matrix getVariance(Matrix matrix, Matrix avgMatrix) throws Exception {
int x = matrix.getX();
int y = matrix.getY();
Matrix varMatrix = new Matrix(x, 1);
boolean isPower = powers.size() > 1;
for (int i = 0; i < x; i++) {
float avg = avgMatrix.getNumber(i, 0);
for (int j = 0; j < y; j++) {
float power;
if (!isPower) {
power = 1;
} else {
power = powers.get(j);
}
float sub = (float) ((float)Math.pow(matrix.getNumber(i, j) - avg, 2) * power);
varMatrix.setNub(i, 0, sub + varMatrix.getNumber(i, 0));
}
}
for (int i = 0; i < x; i++) {
float nub;
if (probabilitySigma > 0) {
nub = varMatrix.getNumber(i, 0) / probabilitySigma;
} else {
nub = varMatrix.getNumber(i, 0) / y;
}
varMatrix.setNub(i, 0, nub);
}
return varMatrix;
}
public float[] getFeature() throws Exception {
int avgLen = avgMatrix.getX();
int length = avgLen * 2 + 1;
float[] feature = new float[length];
for (int i = 0; i < length - 1; i++) {
if (i < avgLen) {
feature[i] = avgMatrix.getNumber(i, 0);
} else {
int t = i - avgLen;
feature[i] = varMatrix.getNumber(t, 0);
}
}
feature[length - 1] = gmParameter;
return feature;
}
public void insertFeature(float[] feature) throws Exception {
int length = feature.length - 1;
int size = length / 2;
avgMatrix = new Matrix(size, 1);
varMatrix = new Matrix(size, 1);
gmParameter = feature[length];
varAll = 1;
for (int i = 0; i < length; i++) {
if (i < size) {
avgMatrix.setNub(i, 0, feature[i]);
} else {
int t = i - size;
float var = feature[i];
varMatrix.setNub(t, 0, var);
varAll = varAll * (float)Math.sqrt(var);
}
}
}
public void gm() throws Exception {//混合高斯聚类模型参数计算
int size = rgbs.size();
if (size > 0) {
Matrix matrix = new Matrix(len, size);
for (int i = 0; i < size; i++) {
float[] rgb = rgbs.get(i);
for (int j = 0; j < len; j++) {
matrix.setNub(j, i, rgb[j]);
}
}
avgMatrix = average(matrix);//均值矩阵
varMatrix = getVariance(matrix, avgMatrix);//方差矩阵
varAll = 1;
for (int i = 0; i < len; i++) {
float var = (float)Math.sqrt(varMatrix.getNumber(i, 0));
varAll = varAll * var;
}
//确认新的混合系数
if (probabilitySigma > 0) {
gmParameter = probabilitySigma / rgbs.size();
}
}
}
public float getGMProbability(float[] feature) throws Exception {//计算正态分布概率密度
float zSigma = 0;
int size = feature.length;
for (int i = 0; i < size; i++) {
float sub = (float)Math.pow(feature[i] - avgMatrix.getNumber(i, 0), 2) / varMatrix.getNumber(i, 0);
zSigma = sub + zSigma;
}
float one = 1 / ((float)Math.pow((float)Math.sqrt((float)Math.PI * 2), size) * varAll);
float two = (float)Math.exp(zSigma * -0.5);
float n = one * two * gmParameter;
return n;
}
public float getGmParameter() {
return gmParameter;
}
public void setGmParameter(float gmParameter) {
this.gmParameter = gmParameter;
}
public void norm() {//范长计算
float sigma = 0;
if (nub > 0) {
for (int i = 0; i < rgb.length; i++) {
float rgbc = rgbAll[i] / nub;
rgb[i] = rgbc;
sigma = sigma + (float)Math.pow(rgbc, 2);
}
norm = (float)Math.sqrt(sigma);
}
}
public void finish() {//进行排序
RGBListSort rgbListSort = new RGBListSort();
Collections.sort(rgbs, rgbListSort);
}
public float getNorm() {
return norm;
}
public float[] getRgb() {
return rgb;
}
class RGBListSort implements Comparator<float[]> {
@Override
public int compare(float[] o1, float[] o2) {
float o1Norm = 0;
float o2Norm = 0;
for (int i = 0; i < o1.length; i++) {
o1Norm = o1Norm + (float)Math.pow(o1[i], 2);
o2Norm = o2Norm + (float)Math.pow(o2[i], 2);
}
if (o1Norm > o2Norm) {
return 1;
} else if (o1Norm < o2Norm) {
return -1;
}
return 0;
}
}
}