Add File
This commit is contained in:
@@ -0,0 +1,467 @@
|
|||||||
|
package org.dromara.easyai.rnnJumpNerveCenter;
|
||||||
|
|
||||||
|
import org.dromara.easyai.matrixTools.Matrix;
|
||||||
|
import org.dromara.easyai.i.ActiveFunction;
|
||||||
|
import org.dromara.easyai.rnnJumpNerveEntity.*;
|
||||||
|
|
||||||
|
import java.util.ArrayList;
|
||||||
|
import java.util.HashMap;
|
||||||
|
import java.util.List;
|
||||||
|
import java.util.Map;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* 神经网络管理工具
|
||||||
|
* 创建神经网络
|
||||||
|
*
|
||||||
|
* @author lidapeng
|
||||||
|
* @date 11:05 上午 2019/12/21
|
||||||
|
*/
|
||||||
|
public class NerveJumpManager {
|
||||||
|
private final int hiddenNerveNub;//隐层神经元个数
|
||||||
|
private final int sensoryNerveNub;//输入神经元个数
|
||||||
|
private final int outNerveNub;//输出神经元个数
|
||||||
|
private final int hiddenDepth;//隐层深度
|
||||||
|
private final List<SensoryNerve> sensoryNerves = new ArrayList<>();//感知神经元
|
||||||
|
private final List<List<Nerve>> depthNerves = new ArrayList<>();//隐层神经元
|
||||||
|
private final List<Nerve> outNerves = new ArrayList<>();//输出神经元
|
||||||
|
private final List<Nerve> softMaxList = new ArrayList<>();//softMax层
|
||||||
|
private final List<RnnOutNerveBody> rnnOutNerveBodies = new ArrayList<>();//rnn输出层神经元
|
||||||
|
private boolean initPower;
|
||||||
|
private float studyPoint = 0.1f;//学习率
|
||||||
|
private final ActiveFunction activeFunction;
|
||||||
|
private final boolean isDynamic;//是否是动态神经网络
|
||||||
|
private boolean isRnn = false;//是否为rnn网络
|
||||||
|
private final int rzType;//正则化类型,默认不进行正则化
|
||||||
|
private final float lParam;//正则参数
|
||||||
|
private final List<NerveCenter> nerveCenterList = new ArrayList<>();//神经中枢集合
|
||||||
|
private float powerTh = 0.2f;//权重阈值
|
||||||
|
|
||||||
|
|
||||||
|
public List<NerveCenter> getNerveCenterList() {
|
||||||
|
return nerveCenterList;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
public void setPowerTh(float powerTh) {
|
||||||
|
this.powerTh = powerTh;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
private Map<String, Float> conversion(Map<Integer, Float> map) {
|
||||||
|
Map<String, Float> cMap = new HashMap<>();
|
||||||
|
for (Map.Entry<Integer, Float> entry : map.entrySet()) {
|
||||||
|
cMap.put(String.valueOf(entry.getKey()), entry.getValue());
|
||||||
|
}
|
||||||
|
return cMap;
|
||||||
|
}
|
||||||
|
|
||||||
|
private Map<Integer, Float> unConversion(Map<String, Float> map) {
|
||||||
|
Map<Integer, Float> cMap = new HashMap<>();
|
||||||
|
for (Map.Entry<String, Float> entry : map.entrySet()) {
|
||||||
|
cMap.put(Integer.parseInt(entry.getKey()), entry.getValue());
|
||||||
|
}
|
||||||
|
return cMap;
|
||||||
|
}
|
||||||
|
|
||||||
|
private ModelParameter getDymModelParameter() throws Exception {//获取动态神经元参数
|
||||||
|
ModelParameter modelParameter = new ModelParameter();
|
||||||
|
List<DymNerveStudy> dymNerveStudies = new ArrayList<>();//动态神经元隐层
|
||||||
|
DymNerveStudy dymOutNerveStudy = new DymNerveStudy();//动态神经元输出层
|
||||||
|
modelParameter.setDymNerveStudies(dymNerveStudies);
|
||||||
|
modelParameter.setDymOutNerveStudy(dymOutNerveStudy);
|
||||||
|
for (List<Nerve> nerve : depthNerves) {
|
||||||
|
Nerve depthNerve = nerve.get(0);//隐层神经元
|
||||||
|
DymNerveStudy deepNerveStudy = new DymNerveStudy();//动态神经元输出层
|
||||||
|
List<Float> list = deepNerveStudy.getList();
|
||||||
|
Matrix matrix = depthNerve.getNerveMatrix();
|
||||||
|
insertWList(matrix, list);
|
||||||
|
dymNerveStudies.add(deepNerveStudy);
|
||||||
|
}
|
||||||
|
Nerve outNerve = outNerves.get(0);
|
||||||
|
Matrix matrix = outNerve.getNerveMatrix();
|
||||||
|
List<Float> list = dymOutNerveStudy.getList();
|
||||||
|
insertWList(matrix, list);
|
||||||
|
return modelParameter;
|
||||||
|
}
|
||||||
|
|
||||||
|
private void insertWList(Matrix matrix, List<Float> list) throws Exception {//
|
||||||
|
for (int i = 0; i < matrix.getX(); i++) {
|
||||||
|
for (int j = 0; j < matrix.getY(); j++) {
|
||||||
|
list.add(matrix.getNumber(i, j));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
public ModelParameter getModelParameter() throws Exception {
|
||||||
|
if (isRnn) {
|
||||||
|
return getRnnModelParameter();
|
||||||
|
} else if (isDynamic) {
|
||||||
|
return getDymModelParameter();
|
||||||
|
} else {
|
||||||
|
return getStaticModelParameter();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private ModelParameter getRnnModelParameter() {//获取rnn当前模型参数
|
||||||
|
ModelParameter modelParameter = new ModelParameter();
|
||||||
|
List<List<NerveStudy>> studyDepthNerves = new ArrayList<>();//隐层神经元模型
|
||||||
|
List<RnnOutNerveStudy> rnnOutNerveStudies = new ArrayList<>();
|
||||||
|
modelParameter.setDepthNerves(studyDepthNerves);
|
||||||
|
modelParameter.setRnnOutNerveStudies(rnnOutNerveStudies);
|
||||||
|
//隐层神经元
|
||||||
|
for (List<Nerve> depthNerve : depthNerves) {
|
||||||
|
//创建一层深度的隐层神经元模型
|
||||||
|
List<NerveStudy> deepNerve = new ArrayList<>();
|
||||||
|
for (Nerve nerve : depthNerve) {
|
||||||
|
//遍历某一层深度的所有隐层神经元
|
||||||
|
NerveStudy nerveStudy = new NerveStudy();
|
||||||
|
nerveStudy.setThreshold(nerve.getThreshold());
|
||||||
|
nerveStudy.setDendrites(conversion(nerve.getDendrites()));
|
||||||
|
deepNerve.add(nerveStudy);
|
||||||
|
}
|
||||||
|
studyDepthNerves.add(deepNerve);
|
||||||
|
}
|
||||||
|
for (RnnOutNerveBody rnnOutNerveBody : rnnOutNerveBodies) {
|
||||||
|
List<NerveStudy> nerveStudies = new ArrayList<>();
|
||||||
|
RnnOutNerveStudy rnnOutNerveStudy = new RnnOutNerveStudy();
|
||||||
|
rnnOutNerveStudies.add(rnnOutNerveStudy);
|
||||||
|
rnnOutNerveStudy.setDepth(rnnOutNerveBody.getDepth());
|
||||||
|
rnnOutNerveStudy.setNerveStudies(nerveStudies);
|
||||||
|
List<Nerve> outNerveList = rnnOutNerveBody.getOutNerves();
|
||||||
|
getOutNerveModel(nerveStudies, outNerveList);
|
||||||
|
}
|
||||||
|
return modelParameter;
|
||||||
|
}
|
||||||
|
|
||||||
|
private void getOutNerveModel(List<NerveStudy> nerveStudies, List<Nerve> outNerveList) {
|
||||||
|
for (Nerve nerve : outNerveList) {
|
||||||
|
NerveStudy nerveStudy = new NerveStudy();
|
||||||
|
nerveStudy.setThreshold(nerve.getThreshold());
|
||||||
|
nerveStudy.setDendrites(conversion(nerve.getDendrites()));
|
||||||
|
nerveStudies.add(nerveStudy);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private ModelParameter getStaticModelParameter() {//获取当前模型参数
|
||||||
|
ModelParameter modelParameter = new ModelParameter();
|
||||||
|
List<List<NerveStudy>> studyDepthNerves = new ArrayList<>();//隐层神经元模型
|
||||||
|
List<NerveStudy> outStudyNerves = new ArrayList<>();//输出神经元
|
||||||
|
//隐层神经元
|
||||||
|
for (List<Nerve> depthNerve : depthNerves) {
|
||||||
|
//创建一层深度的隐层神经元模型
|
||||||
|
List<NerveStudy> deepNerve = new ArrayList<>();
|
||||||
|
getOutNerveModel(deepNerve, depthNerve);
|
||||||
|
studyDepthNerves.add(deepNerve);
|
||||||
|
}
|
||||||
|
for (Nerve nerve : outNerves) {
|
||||||
|
NerveStudy nerveStudy = new NerveStudy();
|
||||||
|
nerveStudy.setThreshold(nerve.getThreshold());
|
||||||
|
nerveStudy.setDendrites(conversion(nerve.getDendrites()));
|
||||||
|
outStudyNerves.add(nerveStudy);
|
||||||
|
}
|
||||||
|
modelParameter.setDepthNerves(studyDepthNerves);
|
||||||
|
modelParameter.setOutNerves(outStudyNerves);
|
||||||
|
return modelParameter;
|
||||||
|
}
|
||||||
|
|
||||||
|
public void insertModelParameter(ModelParameter modelParameter) throws Exception {
|
||||||
|
if (isRnn) {
|
||||||
|
insertRnnModelParameter(modelParameter);
|
||||||
|
} else if (isDynamic) {
|
||||||
|
insertConvolutionModelParameter(modelParameter);//动态神经元注入
|
||||||
|
} else {
|
||||||
|
insertBpModelParameter(modelParameter);//全连接层注入参数
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
//注入卷积层模型参数
|
||||||
|
private void insertConvolutionModelParameter(ModelParameter modelParameter) throws Exception {
|
||||||
|
List<DymNerveStudy> dymNerveStudyList = modelParameter.getDymNerveStudies();
|
||||||
|
DymNerveStudy dymOutNerveStudy = modelParameter.getDymOutNerveStudy();
|
||||||
|
for (int i = 0; i < depthNerves.size(); i++) {
|
||||||
|
Nerve depthNerve = depthNerves.get(i).get(0);
|
||||||
|
DymNerveStudy dymNerveStudy = dymNerveStudyList.get(i);
|
||||||
|
List<Float> list = dymNerveStudy.getList();
|
||||||
|
Matrix nerveMatrix = depthNerve.getNerveMatrix();
|
||||||
|
insertMatrix(nerveMatrix, list);
|
||||||
|
}
|
||||||
|
Nerve outNerve = outNerves.get(0);
|
||||||
|
Matrix outNerveMatrix = outNerve.getNerveMatrix();
|
||||||
|
List<Float> list = dymOutNerveStudy.getList();
|
||||||
|
insertMatrix(outNerveMatrix, list);
|
||||||
|
}
|
||||||
|
|
||||||
|
private void insertMatrix(Matrix matrix, List<Float> list) throws Exception {
|
||||||
|
for (int i = 0; i < list.size(); i++) {
|
||||||
|
matrix.setNub(i, 0, list.get(i));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private void insertRnnModelParameter(ModelParameter modelParameter) throws Exception {
|
||||||
|
List<List<NerveStudy>> depthStudyNerves = modelParameter.getDepthNerves();//隐层神经元
|
||||||
|
List<RnnOutNerveStudy> rnnOutNerveStudies = modelParameter.getRnnOutNerveStudies();
|
||||||
|
//隐层神经元参数注入
|
||||||
|
depthNervesModel(depthStudyNerves);
|
||||||
|
for (RnnOutNerveStudy rnnOutNerveStudy : rnnOutNerveStudies) {
|
||||||
|
RnnOutNerveBody rnnOutNerveBody = getRnnOutNerveBody(rnnOutNerveStudy.getDepth());
|
||||||
|
List<NerveStudy> outStudyNerves = rnnOutNerveStudy.getNerveStudies();
|
||||||
|
List<Nerve> outNerveBody = rnnOutNerveBody.getOutNerves();
|
||||||
|
//输出神经元参数注入
|
||||||
|
outNerveModel(outStudyNerves, outNerveBody);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private void outNerveModel(List<NerveStudy> outStudyNerves, List<Nerve> outNerveBody) {
|
||||||
|
for (int i = 0; i < outNerveBody.size(); i++) {
|
||||||
|
Nerve outNerve = outNerveBody.get(i);
|
||||||
|
NerveStudy nerveStudy = outStudyNerves.get(i);
|
||||||
|
outNerve.setThreshold(nerveStudy.getThreshold());
|
||||||
|
Map<Integer, Float> dendrites = outNerve.getDendrites();
|
||||||
|
Map<Integer, Float> studyDendrites = unConversion(nerveStudy.getDendrites());
|
||||||
|
for (Map.Entry<Integer, Float> outEntry : dendrites.entrySet()) {
|
||||||
|
int key = outEntry.getKey();
|
||||||
|
dendrites.put(key, studyDendrites.get(key));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private void depthNervesModel(List<List<NerveStudy>> depthStudyNerves) {
|
||||||
|
for (int i = 0; i < depthNerves.size(); i++) {
|
||||||
|
List<NerveStudy> depth = depthStudyNerves.get(i);//对应的学习结果
|
||||||
|
List<Nerve> depthNerve = depthNerves.get(i);//深度隐层神经元
|
||||||
|
for (int j = 0; j < depthNerve.size(); j++) {//遍历当前深度神经元
|
||||||
|
Nerve nerve = depthNerve.get(j);
|
||||||
|
NerveStudy nerveStudy = depth.get(j);
|
||||||
|
//学习结果
|
||||||
|
Map<Integer, Float> studyDendrites = unConversion(nerveStudy.getDendrites());
|
||||||
|
//神经元参数注入
|
||||||
|
Map<Integer, Float> dendrites = nerve.getDendrites();
|
||||||
|
nerve.setThreshold(nerveStudy.getThreshold());//注入隐层阈值
|
||||||
|
for (Map.Entry<Integer, Float> entry : dendrites.entrySet()) {
|
||||||
|
int key = entry.getKey();
|
||||||
|
dendrites.put(key, studyDendrites.get(key));//注入隐层权重
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private RnnOutNerveBody getRnnOutNerveBody(int depth) {
|
||||||
|
RnnOutNerveBody myRnnOutNerveBody = null;
|
||||||
|
for (RnnOutNerveBody rnnOutNerveBody : rnnOutNerveBodies) {
|
||||||
|
if (rnnOutNerveBody.getDepth() == depth) {
|
||||||
|
myRnnOutNerveBody = rnnOutNerveBody;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return myRnnOutNerveBody;
|
||||||
|
}
|
||||||
|
|
||||||
|
//注入全连接模型参数
|
||||||
|
private void insertBpModelParameter(ModelParameter modelParameter) {
|
||||||
|
List<List<NerveStudy>> depthStudyNerves = modelParameter.getDepthNerves();//隐层神经元
|
||||||
|
List<NerveStudy> outStudyNerves = modelParameter.getOutNerves();//输出神经元
|
||||||
|
//隐层神经元参数注入
|
||||||
|
depthNervesModel(depthStudyNerves);
|
||||||
|
//输出神经元参数注入
|
||||||
|
outNerveModel(outStudyNerves, outNerves);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* 初始化神经元参数
|
||||||
|
*
|
||||||
|
* @param sensoryNerveNub 输入神经元个数
|
||||||
|
* @param hiddenNerveNub 隐层神经元个数
|
||||||
|
* @param outNerveNub 输出神经元个数
|
||||||
|
* @param hiddenDepth 隐层深度
|
||||||
|
* @param activeFunction 激活函数
|
||||||
|
* @param isDynamic 是否是动态神经元
|
||||||
|
* @param rzType 正则函数
|
||||||
|
* @param lParam 正则系数
|
||||||
|
* @throws Exception 如果参数错误则抛异常
|
||||||
|
*/
|
||||||
|
public NerveJumpManager(int sensoryNerveNub, int hiddenNerveNub, int outNerveNub
|
||||||
|
, int hiddenDepth, ActiveFunction activeFunction, boolean isDynamic,
|
||||||
|
float studyPoint, int rzType, float lParam) throws Exception {
|
||||||
|
if (sensoryNerveNub > 0 && hiddenNerveNub > 0 && outNerveNub > 0 && hiddenDepth > 0 && activeFunction != null) {
|
||||||
|
this.hiddenNerveNub = hiddenNerveNub;
|
||||||
|
this.sensoryNerveNub = sensoryNerveNub;
|
||||||
|
this.outNerveNub = outNerveNub;
|
||||||
|
this.hiddenDepth = hiddenDepth;
|
||||||
|
this.activeFunction = activeFunction;
|
||||||
|
this.isDynamic = isDynamic;
|
||||||
|
this.rzType = rzType;
|
||||||
|
this.lParam = lParam;
|
||||||
|
if (studyPoint > 0 && studyPoint < 1) {
|
||||||
|
this.studyPoint = studyPoint;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
throw new Exception("param is null");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
public List<SensoryNerve> getSensoryNerves() {//获取感知神经元集合
|
||||||
|
return sensoryNerves;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* 初始化
|
||||||
|
*
|
||||||
|
* @param initPower 是否是第一次注入
|
||||||
|
* @param isShowLog 是否打印学习参数
|
||||||
|
* @param isSoftMax 最后一层是否用softMax激活
|
||||||
|
* @param step 卷积步长
|
||||||
|
* @param kernLen 卷积核长
|
||||||
|
*/
|
||||||
|
public void init(boolean initPower, boolean isShowLog, boolean isSoftMax, int step, int kernLen) throws Exception {//进行神经网络的初始化构建
|
||||||
|
this.initPower = initPower;
|
||||||
|
initDepthNerve(false, 0);//初始化深度隐层神经元
|
||||||
|
List<Nerve> nerveList = depthNerves.get(0);//第一层隐层神经元
|
||||||
|
//最后一层隐层神经元啊
|
||||||
|
List<Nerve> lastNerveList = depthNerves.get(depthNerves.size() - 1);
|
||||||
|
List<OutNerve> outNerveList = new ArrayList<>();
|
||||||
|
//初始化输出神经元
|
||||||
|
for (int i = 1; i < outNerveNub + 1; i++) {
|
||||||
|
OutNerve outNerve = new OutNerve(i, studyPoint, initPower,
|
||||||
|
activeFunction, isShowLog, rzType, lParam, isSoftMax, sensoryNerveNub, hiddenNerveNub, outNerveNub, hiddenDepth);
|
||||||
|
//输出层神经元连接最后一层隐层神经元
|
||||||
|
outNerve.connectFather(0, lastNerveList);
|
||||||
|
outNerves.add(outNerve);
|
||||||
|
outNerveList.add(outNerve);
|
||||||
|
}
|
||||||
|
//生成softMax层
|
||||||
|
if (isSoftMax) {//增加softMax层
|
||||||
|
SoftMax softMax = new SoftMax(outNerveList, isShowLog, sensoryNerveNub, hiddenNerveNub, outNerveNub, hiddenDepth);
|
||||||
|
softMaxList.add(softMax);
|
||||||
|
for (Nerve nerve : outNerves) {
|
||||||
|
nerve.connect(0, softMaxList);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
//最后一层隐层神经元 与输出神经元进行连接
|
||||||
|
for (Nerve nerve : lastNerveList) {
|
||||||
|
nerve.connect(0, outNerves);
|
||||||
|
}
|
||||||
|
|
||||||
|
//初始化感知神经元
|
||||||
|
for (int i = 1; i < sensoryNerveNub + 1; i++) {
|
||||||
|
SensoryNerve sensoryNerve = new SensoryNerve(i, hiddenDepth);
|
||||||
|
//感知神经元与第一层隐层神经元进行连接
|
||||||
|
sensoryNerve.connect(0, nerveList);
|
||||||
|
sensoryNerves.add(sensoryNerve);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private void createRnnOutNerve(boolean initPower, boolean isShowLog, List<Nerve> nerveList, int depth
|
||||||
|
, boolean toSoftMax) throws Exception {
|
||||||
|
RnnOutNerveBody rnnOutNerveBody = new RnnOutNerveBody();
|
||||||
|
List<Nerve> mySoftMaxList = new ArrayList<>();
|
||||||
|
List<Nerve> rnnOutNerves = new ArrayList<>();
|
||||||
|
List<OutNerve> layOutNerves = new ArrayList<>();
|
||||||
|
rnnOutNerveBody.setDepth(depth);
|
||||||
|
rnnOutNerveBody.setOutNerves(rnnOutNerves);
|
||||||
|
NerveCenter nerveCenter = nerveCenterList.get(depth);
|
||||||
|
for (int i = 1; i < outNerveNub + 1; i++) {
|
||||||
|
OutNerve outNerve = new OutNerve(i, studyPoint, initPower,
|
||||||
|
activeFunction, isShowLog, rzType, lParam, toSoftMax, sensoryNerveNub, hiddenNerveNub, outNerveNub, hiddenDepth);
|
||||||
|
outNerve.connectFather(depth, nerveList);//每一层的输出神经元 链接每一层的隐层神经元
|
||||||
|
rnnOutNerves.add(outNerve);
|
||||||
|
layOutNerves.add(outNerve);
|
||||||
|
}
|
||||||
|
if (toSoftMax) {
|
||||||
|
SoftMax softMax = new SoftMax(layOutNerves, isShowLog, sensoryNerveNub, hiddenNerveNub, outNerveNub, hiddenDepth);
|
||||||
|
softMax.setNerveCenter(nerveCenter);
|
||||||
|
mySoftMaxList.add(softMax);
|
||||||
|
for (Nerve nerve : rnnOutNerves) {
|
||||||
|
nerve.connect(0, mySoftMaxList);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for (Nerve nerve : nerveList) {
|
||||||
|
nerve.connectOut(rnnOutNerves);
|
||||||
|
}
|
||||||
|
rnnOutNerveBodies.add(rnnOutNerveBody);
|
||||||
|
}
|
||||||
|
|
||||||
|
public void initRnn(boolean initPower, boolean isShowLog, boolean toSoftMax, boolean creator, int startDepth) throws Exception {
|
||||||
|
isRnn = true;
|
||||||
|
this.initPower = initPower;
|
||||||
|
initDepthNerve(creator, startDepth);//初始化深度隐层神经元
|
||||||
|
for (int i = 0; i < depthNerves.size(); i++) {
|
||||||
|
createRnnOutNerve(initPower, isShowLog, depthNerves.get(i), i + 1, toSoftMax);
|
||||||
|
}
|
||||||
|
//初始化感知神经元
|
||||||
|
for (int i = 1; i < sensoryNerveNub + 1; i++) {
|
||||||
|
SensoryNerve sensoryNerve = new SensoryNerve(i, hiddenDepth);
|
||||||
|
for (int j = 0; j < hiddenDepth; j++) {
|
||||||
|
List<Nerve> hiddenNerveList = depthNerves.get(j);//当前遍历隐层神经元
|
||||||
|
sensoryNerve.connect(j + 1, hiddenNerveList);
|
||||||
|
}
|
||||||
|
sensoryNerves.add(sensoryNerve);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private void initDepthNerve(boolean creator, int startDepth) throws Exception {//初始化隐层神经元1
|
||||||
|
if (isRnn) {
|
||||||
|
NerveCenter nerveCenter = new NerveCenter(0, null, powerTh, false);
|
||||||
|
nerveCenterList.add(nerveCenter);
|
||||||
|
}
|
||||||
|
for (int i = 0; i < hiddenDepth; i++) {//遍历深度
|
||||||
|
List<Nerve> hiddenNerveList = new ArrayList<>();
|
||||||
|
float studyPoint = this.studyPoint;
|
||||||
|
if (studyPoint <= 0 || studyPoint > 1) {
|
||||||
|
throw new Exception("studyPoint Values range from 0 to 1");
|
||||||
|
}
|
||||||
|
if (isRnn) {
|
||||||
|
boolean isFinish = i == hiddenDepth - 1;
|
||||||
|
NerveCenter nerveCenter = new NerveCenter(i + 1, hiddenNerveList, powerTh, isFinish);
|
||||||
|
nerveCenterList.add(nerveCenter);
|
||||||
|
}
|
||||||
|
for (int j = 1; j < hiddenNerveNub + 1; j++) {//遍历同级
|
||||||
|
HiddenNerve hiddenNerve = new HiddenNerve(j, i + 1, studyPoint, initPower, activeFunction
|
||||||
|
, rzType, lParam, sensoryNerveNub, hiddenNerveNub, outNerveNub,
|
||||||
|
hiddenDepth, creator, startDepth);
|
||||||
|
hiddenNerveList.add(hiddenNerve);
|
||||||
|
}
|
||||||
|
depthNerves.add(hiddenNerveList);
|
||||||
|
}
|
||||||
|
if (isRnn) {
|
||||||
|
initRnnHiddenNerve();
|
||||||
|
} else {
|
||||||
|
initHiddenNerve();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private void initHiddenNerve() {
|
||||||
|
for (int i = 0; i < hiddenDepth - 1; i++) {
|
||||||
|
List<Nerve> hiddenNerveList = depthNerves.get(i);//当前遍历隐层神经元
|
||||||
|
List<Nerve> nextHiddenNerveList = depthNerves.get(i + 1);
|
||||||
|
for (Nerve nerve : hiddenNerveList) {
|
||||||
|
nerve.connect(0, nextHiddenNerveList);
|
||||||
|
}
|
||||||
|
for (Nerve nerve : nextHiddenNerveList) {
|
||||||
|
nerve.connectFather(0, hiddenNerveList);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private void initRnnHiddenNerve() {//初始化隐层神经元2
|
||||||
|
for (int i = 0; i < hiddenDepth; i++) {//遍历深度
|
||||||
|
List<Nerve> hiddenNerveList = depthNerves.get(i);//当前遍历隐层神经元
|
||||||
|
if (i < hiddenDepth - 1) {//向前链接
|
||||||
|
for (int j = i + 1; j < hiddenDepth; j++) {
|
||||||
|
List<Nerve> nextHiddenNerveList = depthNerves.get(j);
|
||||||
|
for (Nerve hiddenNerve : hiddenNerveList) {
|
||||||
|
hiddenNerve.connect(j + 1, nextHiddenNerveList);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (i > 0) {//向后链接
|
||||||
|
for (int t = i - 1; t >= 0; t--) {
|
||||||
|
List<Nerve> nextHiddenNerveList = depthNerves.get(t);
|
||||||
|
for (Nerve hiddenNerve : hiddenNerveList) {
|
||||||
|
hiddenNerve.connectFather(t + 1, nextHiddenNerveList);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
Reference in New Issue
Block a user