From c20ef7974d0609d3f3b0e81ec8d04951e53b180b Mon Sep 17 00:00:00 2001 From: inter Date: Thu, 4 Sep 2025 14:09:03 +0800 Subject: [PATCH] Add File --- .../dromara/easyai/config/ResnetConfig.java | 144 ++++++++++++++++++ 1 file changed, 144 insertions(+) create mode 100644 src/main/java/org/dromara/easyai/config/ResnetConfig.java diff --git a/src/main/java/org/dromara/easyai/config/ResnetConfig.java b/src/main/java/org/dromara/easyai/config/ResnetConfig.java new file mode 100644 index 0000000..14bca25 --- /dev/null +++ b/src/main/java/org/dromara/easyai/config/ResnetConfig.java @@ -0,0 +1,144 @@ +package org.dromara.easyai.config; + +/** + * @author lidapeng + * @time 2025/4/11 10:53 + * @des resNet 配置参数 + */ +public class ResnetConfig { + private int size;//图像尺寸 图像必须为正方形 + private float studyRate = 0.0025f;//全局学习率 + private int regularModel = RZ.NOT_RZ;//正则模式 + private float regular = 0;//正则系数 + private int hiddenNerveNumber = 16;//线性层隐层神经元数量 + private int typeNumber = 2;//分类数量 + private boolean softMax = true;//分类还是拟合 + private boolean showLog = true;//是否打印参数 + private int channelNo = 2;//通道数 + private int hiddenDeep = 1;//线性层隐层神经元深度 + private int minFeatureSize = 5;//卷积层最小特征大小 + private float gaMa = 0.9f;//自适应学习率衰减系数 + private float GMaxTh = 500f;//梯度最大值 + private boolean auto = true;//是否使用自适应学习率 + private float GRate = 0.01f;//梯度衰减 + + public float getGRate() { + return GRate; + } + + public void setGRate(float GRate) { + this.GRate = GRate; + } + + public boolean isAuto() { + return auto; + } + + public void setAuto(boolean auto) { + this.auto = auto; + } + + public float getGMaxTh() { + return GMaxTh; + } + + public void setGMaxTh(float GMaxTh) { + this.GMaxTh = GMaxTh; + } + + public float getGaMa() { + return gaMa; + } + + public void setGaMa(float gaMa) { + this.gaMa = gaMa; + } + + public int getMinFeatureSize() { + return minFeatureSize; + } + + public void setMinFeatureSize(int minFeatureSize) { + this.minFeatureSize = minFeatureSize; + } + + public int getHiddenDeep() { + return hiddenDeep; + } + + public void setHiddenDeep(int hiddenDeep) { + this.hiddenDeep = hiddenDeep; + } + + public int getChannelNo() { + return channelNo; + } + + public void setChannelNo(int channelNo) { + this.channelNo = channelNo; + } + + public boolean isShowLog() { + return showLog; + } + + public void setShowLog(boolean showLog) { + this.showLog = showLog; + } + + public int getSize() { + return size; + } + + public void setSize(int size) { + this.size = size; + } + + public float getStudyRate() { + return studyRate; + } + + public void setStudyRate(float studyRate) { + this.studyRate = studyRate; + } + + public int getRegularModel() { + return regularModel; + } + + public void setRegularModel(int regularModel) { + this.regularModel = regularModel; + } + + public float getRegular() { + return regular; + } + + public void setRegular(float regular) { + this.regular = regular; + } + + public int getHiddenNerveNumber() { + return hiddenNerveNumber; + } + + public void setHiddenNerveNumber(int hiddenNerveNumber) { + this.hiddenNerveNumber = hiddenNerveNumber; + } + + public int getTypeNumber() { + return typeNumber; + } + + public void setTypeNumber(int typeNumber) { + this.typeNumber = typeNumber; + } + + public boolean isSoftMax() { + return softMax; + } + + public void setSoftMax(boolean softMax) { + this.softMax = softMax; + } +}