This commit is contained in:
2025-09-04 14:09:23 +08:00
parent 735b61e0ae
commit c878cc23d5

View File

@@ -0,0 +1,147 @@
package org.dromara.easyai.transFormer.nerve;
import org.dromara.easyai.i.OutBack;
import org.dromara.easyai.matrixTools.Matrix;
import org.dromara.easyai.matrixTools.MatrixOperation;
import java.util.ArrayList;
import java.util.List;
public class SoftMax extends Nerve {
private final List<OutNerve> outNerves;
private final boolean isShowLog;
private final MatrixOperation matrixOperation = new MatrixOperation();
private final float timePunValue;//时间惩罚系数
public SoftMax(List<OutNerve> outNerves, boolean isShowLog
, int sensoryNerveNub, int hiddenNerveNub, int outNerveNub, float timePunValue) throws Exception {
super(0, "softMax", 0, null, sensoryNerveNub, hiddenNerveNub, outNerveNub,
null, 0, 0, 1);
this.timePunValue = timePunValue;
this.outNerves = outNerves;
this.isShowLog = isShowLog;
}
private Matrix getSigmaByColum(Matrix matrix) throws Exception {
int x = matrix.getX();
int y = matrix.getY();
Matrix myMatrix = new Matrix(1, y);
float pun = 1;
for (int i = x - 1; i >= 0; i--) {
for (int j = 0; j < y; j++) {
float value = myMatrix.getNumber(0, j) + matrix.getNumber(i, j) * pun;
myMatrix.setNub(0, j, value);
}
pun = pun * timePunValue;
}
return myMatrix;
}
@Override
protected void toOut(long eventId, Matrix parameter, boolean isStudy, OutBack outBack, List<Integer> E, boolean outAllPro) throws Exception {
boolean allReady = insertMatrixParameter(eventId, parameter);
if (allReady) {
Matrix feature = reMatrixFeatures.get(eventId).getMatrix();//特征
reMatrixFeatures.remove(eventId);
int x = feature.getX();
if (isStudy) {
// System.out.println("分类数量:" + feature.getY());
if (E.size() != x) {
throw new Exception("期望的序列长度与实际序列不相等请检查期望E补充漏掉的序列");
}
Matrix allError = null;
for (int i = 0; i < x; i++) {
//Matrix row = feature.getRow(i);
Matrix r = feature.getSonOfMatrix(0, 0, i + 1, feature.getY());
Matrix row = getSigmaByColum(r);
Mes mes = softMax(true, row, false);//输出值
int key = E.get(i);
if (isShowLog) {
System.out.println("softMax==" + key + ",out==" + mes.poi + ",nerveId==" + mes.typeID);
}
Matrix errors = error(mes, key, i, x);
if (i == 0) {
allError = errors;
} else {
allError = matrixOperation.add(allError, errors);
//allError = matrixOperation.pushVector(allError, errors, true);
}
}
int size = outNerves.size();
for (int i = 0; i < size; i++) {
Matrix errorMatrix = allError.getColumn(i);
outNerves.get(i).getGBySoftMax(errorMatrix, eventId);
}
} else {
if (outBack != null) {
Matrix row = getSigmaByColum(feature);
Mes mes = softMax(false, row, outAllPro);//输出值
outBack.getBack(mes.poi, mes.typeID, eventId);
outBack.getBackMatrix(row, 1, eventId);
if (outAllPro) {
outBack.getSoftMaxBack(eventId, mes.softMax);
}
} else {
throw new Exception("not find outBack");
}
}
}
}
private Matrix error(Mes mes, int key, int featureIndex, int allSize) throws Exception {
int t = key - 1;
List<Float> softMax = mes.softMax;
Matrix matrix = new Matrix(allSize, softMax.size());
for (int i = 0; i < softMax.size(); i++) {
float self = softMax.get(i);
float myError;
if (i != t) {
myError = -self;
} else {
myError = 1 - self;
}
float pun = 1;
for (int j = featureIndex; j >= 0; j--) {
float error = myError * pun;
matrix.setNub(j, i, error);
pun = pun * timePunValue;
}
}
return matrix;
}
private Mes softMax(boolean isStudy, Matrix matrix, boolean outAllPro) throws Exception {//计算当前输出结果
float sigma = 0;
int id = 0;
float poi = 0;
Mes mes = new Mes();
int size = matrix.getY();
for (int j = 0; j < size; j++) {
float value = matrix.getNumber(0, j);
sigma = (float) Math.exp(value) + sigma;
}
List<Float> softMax = new ArrayList<>();
for (int i = 0; i < size; i++) {
float eSelf = (float) Math.exp(matrix.getNumber(0, i));
float value = eSelf / sigma;
if (isStudy || outAllPro) {
softMax.add(value);
}
if (value > poi) {
poi = value;
id = i + 1;
}
}
mes.softMax = softMax;
mes.typeID = id;
mes.poi = poi;
return mes;
}
static class Mes {
int typeID;
float poi;
List<Float> softMax;
}
}