package org.dromara.easyai.tools; import java.util.List; public abstract class Frequency {//统计频数 public float average(float... m) {//计算平均值 int len = m.length; float allNub = 0; for (int i = 0; i < len; i++) { allNub = allNub + m[i]; } allNub = allNub / len; return allNub; } public static float getEDist(float[] x1, float[] x2) {//返回两个等长数组之间的欧式距离 float[] y = new float[x1.length]; for (int i = 0; i < y.length; i++) { y[i] = x1[i] - x2[i]; } float sigma = 0; for (int i = 0; i < y.length; i++) { sigma = sigma + (float)Math.pow(y[i], 2); } return (float)Math.sqrt(sigma); } public float averageByList(List m) {//计算平均值 int len = m.size(); float allNub = 0; for (int i = 0; i < len; i++) { allNub = allNub + m.get(i); } allNub = ArithUtil.div(allNub, len); return allNub; } public float sigma(float... m) {//求和 int len = m.length; float allNub = 0; for (int i = 0; i < len; i++) { allNub = ArithUtil.add(allNub, m[i]); } return allNub; } public float getPointLength(float x, float y, float i, float j) {//获取两个二维坐标之间的欧式距离 return (float)Math.sqrt(ArithUtil.add((float)Math.pow(ArithUtil.sub(x, i), 2), (float)Math.pow(ArithUtil.sub(y, j), 2))); } public float variance(float... m) {//计算方差 float ave = average(m);//先计算出平均值 float allNub = 0; for (int i = 0; i < m.length; i++) { allNub = allNub + (float)Math.pow(m[i] - ave, 2); } return allNub / m.length; } public float varianceByAve(float[] m, float ave) {// 计算方差,依赖平均值 float allNub = 0; for (int i = 0; i < m.length; i++) { allNub = allNub + (float)Math.pow(m[i] - ave, 2); } return allNub / m.length; } public float sdByAvg(float[] m, float avg) {//计算标准差,带平均值 float var = varianceByAve(m, avg); return (float)Math.sqrt(var); } public float sd(float... m) {//计算标准差 float var = variance(m); return (float)Math.sqrt(var); } public float dcByAvg(float[] m, float ave) {//带均值算离散 float allNub = 0; for (int i = 0; i < m.length; i++) { allNub = allNub + (float)Math.pow(m[i] - ave, 2); } return ArithUtil.div((float)Math.sqrt(ArithUtil.div(allNub, m.length)), ave);//离散系数 } public float dc(float... m) {//计算离散系数 float ave = average(m);//先计算出平均值 float dc = 0; if (ave > 0) { float allNub = 0; for (int i = 0; i < m.length; i++) { allNub = allNub + (float)Math.pow(m[i] - ave, 2); } dc = ArithUtil.div((float)Math.sqrt(ArithUtil.div(allNub, m.length)), ave);//离散系数 } return dc; } public float softMax(int t, float... m) {//下标和数组 float my = (float)Math.exp(m[t]); float all = 0.0f; int allLength = m.length; for (int i = 0; i < allLength; i++) { all = all + (float)Math.exp(m[i]); } return ArithUtil.div(my, all); } public float[] getLimit(float[] m) {//获取数组中的最大值和最小值,最小值在前,最大值在后 float[] limit = new float[2]; float max = 0; float min = -1; int l = m.length; for (int i = 0; i < l; i++) { float nub = m[i]; if (min == -1 || nub < min) { min = nub; } if (nub > max) { max = nub; } } limit[0] = min; limit[1] = max; return limit; } }