package org.dromara.easyai.pso; import org.dromara.easyai.i.PsoFunction; import java.util.ArrayList; import java.util.List; import java.util.Random; /** * @param * @DATA * @Author LiDaPeng * @Description 粒子群 */ public class PSO { private float globalValue = -1;//当前全局最优值 private int times;//迭代次数 private List allPar = new ArrayList<>();//全部粒子集合 private PsoFunction psoFunction;//粒子群执行函数 private float inertialFactor = 0.5f;//惯性因子 private float selfStudyFactor = 2;//个体学习因子 private float socialStudyFactor = 2;//社会学习因子 private boolean isMax;//取最大值还是最小值 private float[] allBest;//全局最佳位置 private Random random = new Random(); private float[] minBorder, maxBorder; private float maxSpeed; private float initSpeed;//初始速度 /** * 初始化 * * @param dimensionNub 维度 * @param minBorder 最小边界 * @param maxBorder 最大边界 * @param times 迭代次数 * @param particleNub 粒子数量 * @param psoFunction 适应函数 * @param inertialFactor 惯性因子 * @param selfStudyFactor 个体学习因子 * @param socialStudyFactor 社会学习因子 * @param isMax 最大值是否为最优 * @param maxSpeed 最大速度 * @param initSpeed 初始速度 * @throws Exception */ public PSO(int dimensionNub, float[] minBorder, float[] maxBorder, int times, int particleNub, PsoFunction psoFunction, float inertialFactor, float selfStudyFactor, float socialStudyFactor , boolean isMax, float maxSpeed, float initSpeed) { this.initSpeed = initSpeed; this.times = times; this.psoFunction = psoFunction; this.isMax = isMax; allBest = new float[dimensionNub]; this.minBorder = minBorder; this.maxBorder = maxBorder; this.maxSpeed = maxSpeed; if (inertialFactor > 0) { this.inertialFactor = inertialFactor; } if (selfStudyFactor >= 0 && selfStudyFactor <= 4) { this.selfStudyFactor = selfStudyFactor; } if (socialStudyFactor >= 0 && socialStudyFactor <= 4) { this.socialStudyFactor = socialStudyFactor; } for (int i = 0; i < particleNub; i++) {//初始化生成粒子群 Particle particle = new Particle(dimensionNub); allPar.add(particle); } } public float[] getAllBest() { return allBest; } public void setAllPar(List allPar) {//外置粒子群注入 this.allPar = allPar; } public void start() throws Exception {//开始进行迭代 int size = allPar.size(); for (int i = 0; i < times; i++) { for (int j = 0; j < size; j++) { move(allPar.get(j), j); } } //粒子群移动结束 // draw("/Users/lidapeng/Desktop/test/testOne/e2.jpg", fatherX, fatherY); } private void move(Particle particle, int id) throws Exception {//粒子群开始移动 float[] parameter = particle.getParameter();//当前粒子的位置 BestData[] bestData = particle.bestDataArray;//该粒子的信息 float value = psoFunction.getResult(parameter, id); float selfValue = particle.selfBestValue;//局部最佳值 if (isMax) {//取最大值 if (value > globalValue) {//更新全局最大值 globalValue = value; //更新全局最佳位置 for (int i = 0; i < allBest.length; i++) { allBest[i] = parameter[i]; } } if (value > selfValue) {//更新局部最大值 particle.selfBestValue = value; //更新局部最佳位置 for (int i = 0; i < bestData.length; i++) { bestData[i].selfBestPosition = parameter[i]; } } } else {//取最小值 if (globalValue < 0 || value < globalValue) {//更新全局最小值 globalValue = value; //更新全局最佳位置 for (int i = 0; i < allBest.length; i++) { allBest[i] = parameter[i]; } } if (selfValue < 0 || value < selfValue) {//更新全局最小值 particle.selfBestValue = value; //更新局部最佳位置 for (int i = 0; i < bestData.length; i++) { bestData[i].selfBestPosition = parameter[i]; } } } //先更新粒子每个维度的速度 for (int i = 0; i < bestData.length; i++) { float speed = bestData[i].speed;//当前维度的速度 float pid = bestData[i].selfBestPosition;//当前自己的最佳位置 float selfPosition = parameter[i];//当前自己的位置 float pgd = allBest[i];//当前维度的全局最佳位置 //当前维度更新后的速度 speed = inertialFactor * speed + selfStudyFactor * random.nextFloat() * (pid - selfPosition) + socialStudyFactor * random.nextFloat() * (pgd - selfPosition); if ((float)Math.abs(speed) > maxSpeed) { if (speed > 0) { speed = maxSpeed; } else { speed = -maxSpeed; } } bestData[i].speed = speed; //更新该粒子该维度新的位置 float position = selfPosition + speed; if (minBorder != null) { if (position < minBorder[i]) { position = minBorder[i]; } if (position > maxBorder[i]) { position = maxBorder[i]; } } bestData[i].selfPosition = position; } } class Particle {//粒子 private BestData[] bestDataArray; private float selfBestValue = -1;//自身最优的值 private float[] getParameter() {//获取粒子位置信息 float[] parameter = new float[bestDataArray.length]; for (int i = 0; i < parameter.length; i++) { parameter[i] = bestDataArray[i].selfPosition; } return parameter; } protected Particle(int dimensionNub) {//初始化随机位置 bestDataArray = new BestData[dimensionNub]; for (int i = 0; i < dimensionNub; i++) { float position; if (minBorder != null && maxBorder != null) { float min = minBorder[i]; float max = maxBorder[i]; float region = max - min + 1; position = random.nextInt((int) region) + min;//初始化该维度的位置 } else { position = random.nextFloat(); } bestDataArray[i] = new BestData(position, initSpeed); } } } class BestData {//数据保存 private BestData(float selfPosition, float initSpeed) { this.selfBestPosition = selfPosition; this.selfPosition = selfPosition; speed = initSpeed; } private float speed;//该粒子当前维度的速度 private float selfBestPosition;//当前维度自身最优的历史位置/自己最优位置的值 private float selfPosition;//当前维度自己现在的位置/也就是当前维度自己的值 } }