Files
OpenPCDet/pcdet/datasets/augmentor/augmentor_utils.py

659 lines
26 KiB
Python
Raw Permalink Normal View History

2025-09-21 20:18:31 +08:00
import numpy as np
import math
import copy
from ...utils import common_utils
from ...utils import box_utils
def random_flip_along_x(gt_boxes, points, return_flip=False, enable=None):
"""
Args:
gt_boxes: (N, 7 + C), [x, y, z, dx, dy, dz, heading, [vx], [vy]]
points: (M, 3 + C)
Returns:
"""
if enable is None:
enable = np.random.choice([False, True], replace=False, p=[0.5, 0.5])
if enable:
gt_boxes[:, 1] = -gt_boxes[:, 1]
gt_boxes[:, 6] = -gt_boxes[:, 6]
points[:, 1] = -points[:, 1]
if gt_boxes.shape[1] > 7:
gt_boxes[:, 8] = -gt_boxes[:, 8]
if return_flip:
return gt_boxes, points, enable
return gt_boxes, points
def random_flip_along_y(gt_boxes, points, return_flip=False, enable=None):
"""
Args:
gt_boxes: (N, 7 + C), [x, y, z, dx, dy, dz, heading, [vx], [vy]]
points: (M, 3 + C)
Returns:
"""
if enable is None:
enable = np.random.choice([False, True], replace=False, p=[0.5, 0.5])
if enable:
gt_boxes[:, 0] = -gt_boxes[:, 0]
gt_boxes[:, 6] = -(gt_boxes[:, 6] + np.pi)
points[:, 0] = -points[:, 0]
if gt_boxes.shape[1] > 7:
gt_boxes[:, 7] = -gt_boxes[:, 7]
if return_flip:
return gt_boxes, points, enable
return gt_boxes, points
def global_rotation(gt_boxes, points, rot_range, return_rot=False, noise_rotation=None):
"""
Args:
gt_boxes: (N, 7 + C), [x, y, z, dx, dy, dz, heading, [vx], [vy]]
points: (M, 3 + C),
rot_range: [min, max]
Returns:
"""
if noise_rotation is None:
noise_rotation = np.random.uniform(rot_range[0], rot_range[1])
points = common_utils.rotate_points_along_z(points[np.newaxis, :, :], np.array([noise_rotation]))[0]
gt_boxes[:, 0:3] = common_utils.rotate_points_along_z(gt_boxes[np.newaxis, :, 0:3], np.array([noise_rotation]))[0]
gt_boxes[:, 6] += noise_rotation
if gt_boxes.shape[1] > 7:
gt_boxes[:, 7:9] = common_utils.rotate_points_along_z(
np.hstack((gt_boxes[:, 7:9], np.zeros((gt_boxes.shape[0], 1))))[np.newaxis, :, :],
np.array([noise_rotation])
)[0][:, 0:2]
if return_rot:
return gt_boxes, points, noise_rotation
return gt_boxes, points
def global_scaling(gt_boxes, points, scale_range, return_scale=False):
"""
Args:
gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading]
points: (M, 3 + C),
scale_range: [min, max]
Returns:
"""
if scale_range[1] - scale_range[0] < 1e-3:
return gt_boxes, points
noise_scale = np.random.uniform(scale_range[0], scale_range[1])
points[:, :3] *= noise_scale
gt_boxes[:, :6] *= noise_scale
if gt_boxes.shape[1] > 7:
gt_boxes[:, 7:] *= noise_scale
if return_scale:
return gt_boxes, points, noise_scale
return gt_boxes, points
def global_scaling_with_roi_boxes(gt_boxes, roi_boxes, points, scale_range, return_scale=False):
"""
Args:
gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading]
points: (M, 3 + C),
scale_range: [min, max]
Returns:
"""
if scale_range[1] - scale_range[0] < 1e-3:
return gt_boxes, points
noise_scale = np.random.uniform(scale_range[0], scale_range[1])
points[:, :3] *= noise_scale
gt_boxes[:, :6] *= noise_scale
roi_boxes[:,:, [0,1,2,3,4,5,7,8]] *= noise_scale
if return_scale:
return gt_boxes,roi_boxes, points, noise_scale
return gt_boxes, roi_boxes, points
def random_image_flip_horizontal(image, depth_map, gt_boxes, calib):
"""
Performs random horizontal flip augmentation
Args:
image: (H_image, W_image, 3), Image
depth_map: (H_depth, W_depth), Depth map
gt_boxes: (N, 7), 3D box labels in LiDAR coordinates [x, y, z, w, l, h, ry]
calib: calibration.Calibration, Calibration object
Returns:
aug_image: (H_image, W_image, 3), Augmented image
aug_depth_map: (H_depth, W_depth), Augmented depth map
aug_gt_boxes: (N, 7), Augmented 3D box labels in LiDAR coordinates [x, y, z, w, l, h, ry]
"""
# Randomly augment with 50% chance
enable = np.random.choice([False, True], replace=False, p=[0.5, 0.5])
if enable:
# Flip images
aug_image = np.fliplr(image)
aug_depth_map = np.fliplr(depth_map)
# Flip 3D gt_boxes by flipping the centroids in image space
aug_gt_boxes = copy.copy(gt_boxes)
locations = aug_gt_boxes[:, :3]
img_pts, img_depth = calib.lidar_to_img(locations)
W = image.shape[1]
img_pts[:, 0] = W - img_pts[:, 0]
pts_rect = calib.img_to_rect(u=img_pts[:, 0], v=img_pts[:, 1], depth_rect=img_depth)
pts_lidar = calib.rect_to_lidar(pts_rect)
aug_gt_boxes[:, :3] = pts_lidar
aug_gt_boxes[:, 6] = -1 * aug_gt_boxes[:, 6]
else:
aug_image = image
aug_depth_map = depth_map
aug_gt_boxes = gt_boxes
return aug_image, aug_depth_map, aug_gt_boxes
def random_local_translation_along_x(gt_boxes, points, offset_range):
"""
Args:
gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading, [vx], [vy]]
points: (M, 3 + C),
offset_range: [min max]]
Returns:
"""
# augs = {}
for idx, box in enumerate(gt_boxes):
offset = np.random.uniform(offset_range[0], offset_range[1])
# augs[f'object_{idx}'] = offset
points_in_box, mask = get_points_in_box(points, box)
points[mask, 0] += offset
gt_boxes[idx, 0] += offset
# if gt_boxes.shape[1] > 7:
# gt_boxes[idx, 7] += offset
return gt_boxes, points
def random_local_translation_along_y(gt_boxes, points, offset_range):
"""
Args:
gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading, [vx], [vy]]
points: (M, 3 + C),
offset_range: [min max]]
Returns:
"""
# augs = {}
for idx, box in enumerate(gt_boxes):
offset = np.random.uniform(offset_range[0], offset_range[1])
# augs[f'object_{idx}'] = offset
points_in_box, mask = get_points_in_box(points, box)
points[mask, 1] += offset
gt_boxes[idx, 1] += offset
# if gt_boxes.shape[1] > 8:
# gt_boxes[idx, 8] += offset
return gt_boxes, points
def random_local_translation_along_z(gt_boxes, points, offset_range):
"""
Args:
gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading, [vx], [vy]]
points: (M, 3 + C),
offset_range: [min max]]
Returns:
"""
# augs = {}
for idx, box in enumerate(gt_boxes):
offset = np.random.uniform(offset_range[0], offset_range[1])
# augs[f'object_{idx}'] = offset
points_in_box, mask = get_points_in_box(points, box)
points[mask, 2] += offset
gt_boxes[idx, 2] += offset
return gt_boxes, points
def global_frustum_dropout_top(gt_boxes, points, intensity_range):
"""
Args:
gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading, [vx], [vy]],
points: (M, 3 + C),
intensity: [min, max]
Returns:
"""
intensity = np.random.uniform(intensity_range[0], intensity_range[1])
# threshold = max - length * uniform(0 ~ 0.2)
threshold = np.max(points[:, 2]) - intensity * (np.max(points[:, 2]) - np.min(points[:, 2]))
points = points[points[:, 2] < threshold]
gt_boxes = gt_boxes[gt_boxes[:, 2] < threshold]
return gt_boxes, points
def global_frustum_dropout_bottom(gt_boxes, points, intensity_range):
"""
Args:
gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading, [vx], [vy]],
points: (M, 3 + C),
intensity: [min, max]
Returns:
"""
intensity = np.random.uniform(intensity_range[0], intensity_range[1])
threshold = np.min(points[:, 2]) + intensity * (np.max(points[:, 2]) - np.min(points[:, 2]))
points = points[points[:, 2] > threshold]
gt_boxes = gt_boxes[gt_boxes[:, 2] > threshold]
return gt_boxes, points
def global_frustum_dropout_left(gt_boxes, points, intensity_range):
"""
Args:
gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading, [vx], [vy]],
points: (M, 3 + C),
intensity: [min, max]
Returns:
"""
intensity = np.random.uniform(intensity_range[0], intensity_range[1])
threshold = np.max(points[:, 1]) - intensity * (np.max(points[:, 1]) - np.min(points[:, 1]))
points = points[points[:, 1] < threshold]
gt_boxes = gt_boxes[gt_boxes[:, 1] < threshold]
return gt_boxes, points
def global_frustum_dropout_right(gt_boxes, points, intensity_range):
"""
Args:
gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading, [vx], [vy]],
points: (M, 3 + C),
intensity: [min, max]
Returns:
"""
intensity = np.random.uniform(intensity_range[0], intensity_range[1])
threshold = np.min(points[:, 1]) + intensity * (np.max(points[:, 1]) - np.min(points[:, 1]))
points = points[points[:, 1] > threshold]
gt_boxes = gt_boxes[gt_boxes[:, 1] > threshold]
return gt_boxes, points
def local_scaling(gt_boxes, points, scale_range):
"""
Args:
gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading]
points: (M, 3 + C),
scale_range: [min, max]
Returns:
"""
if scale_range[1] - scale_range[0] < 1e-3:
return gt_boxes, points
# augs = {}
for idx, box in enumerate(gt_boxes):
noise_scale = np.random.uniform(scale_range[0], scale_range[1])
# augs[f'object_{idx}'] = noise_scale
points_in_box, mask = get_points_in_box(points, box)
# tranlation to axis center
points[mask, 0] -= box[0]
points[mask, 1] -= box[1]
points[mask, 2] -= box[2]
# apply scaling
points[mask, :3] *= noise_scale
# tranlation back to original position
points[mask, 0] += box[0]
points[mask, 1] += box[1]
points[mask, 2] += box[2]
gt_boxes[idx, 3:6] *= noise_scale
return gt_boxes, points
def local_rotation(gt_boxes, points, rot_range):
"""
Args:
gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading, [vx], [vy]]
points: (M, 3 + C),
rot_range: [min, max]
Returns:
"""
# augs = {}
for idx, box in enumerate(gt_boxes):
noise_rotation = np.random.uniform(rot_range[0], rot_range[1])
# augs[f'object_{idx}'] = noise_rotation
points_in_box, mask = get_points_in_box(points, box)
centroid_x = box[0]
centroid_y = box[1]
centroid_z = box[2]
# tranlation to axis center
points[mask, 0] -= centroid_x
points[mask, 1] -= centroid_y
points[mask, 2] -= centroid_z
box[0] -= centroid_x
box[1] -= centroid_y
box[2] -= centroid_z
# apply rotation
points[mask, :] = common_utils.rotate_points_along_z(points[np.newaxis, mask, :], np.array([noise_rotation]))[0]
box[0:3] = common_utils.rotate_points_along_z(box[np.newaxis, np.newaxis, 0:3], np.array([noise_rotation]))[0][0]
# tranlation back to original position
points[mask, 0] += centroid_x
points[mask, 1] += centroid_y
points[mask, 2] += centroid_z
box[0] += centroid_x
box[1] += centroid_y
box[2] += centroid_z
gt_boxes[idx, 6] += noise_rotation
if gt_boxes.shape[1] > 8:
gt_boxes[idx, 7:9] = common_utils.rotate_points_along_z(
np.hstack((gt_boxes[idx, 7:9], np.zeros((gt_boxes.shape[0], 1))))[np.newaxis, :, :],
np.array([noise_rotation])
)[0][:, 0:2]
return gt_boxes, points
def local_frustum_dropout_top(gt_boxes, points, intensity_range):
"""
Args:
gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading, [vx], [vy]],
points: (M, 3 + C),
intensity: [min, max]
Returns:
"""
for idx, box in enumerate(gt_boxes):
x, y, z, dx, dy, dz = box[0], box[1], box[2], box[3], box[4], box[5]
intensity = np.random.uniform(intensity_range[0], intensity_range[1])
points_in_box, mask = get_points_in_box(points, box)
threshold = (z + dz / 2) - intensity * dz
points = points[np.logical_not(np.logical_and(mask, points[:, 2] >= threshold))]
return gt_boxes, points
def local_frustum_dropout_bottom(gt_boxes, points, intensity_range):
"""
Args:
gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading, [vx], [vy]],
points: (M, 3 + C),
intensity: [min, max]
Returns:
"""
for idx, box in enumerate(gt_boxes):
x, y, z, dx, dy, dz = box[0], box[1], box[2], box[3], box[4], box[5]
intensity = np.random.uniform(intensity_range[0], intensity_range[1])
points_in_box, mask = get_points_in_box(points, box)
threshold = (z - dz / 2) + intensity * dz
points = points[np.logical_not(np.logical_and(mask, points[:, 2] <= threshold))]
return gt_boxes, points
def local_frustum_dropout_left(gt_boxes, points, intensity_range):
"""
Args:
gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading, [vx], [vy]],
points: (M, 3 + C),
intensity: [min, max]
Returns:
"""
for idx, box in enumerate(gt_boxes):
x, y, z, dx, dy, dz = box[0], box[1], box[2], box[3], box[4], box[5]
intensity = np.random.uniform(intensity_range[0], intensity_range[1])
points_in_box, mask = get_points_in_box(points, box)
threshold = (y + dy / 2) - intensity * dy
points = points[np.logical_not(np.logical_and(mask, points[:, 1] >= threshold))]
return gt_boxes, points
def local_frustum_dropout_right(gt_boxes, points, intensity_range):
"""
Args:
gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading, [vx], [vy]],
points: (M, 3 + C),
intensity: [min, max]
Returns:
"""
for idx, box in enumerate(gt_boxes):
x, y, z, dx, dy, dz = box[0], box[1], box[2], box[3], box[4], box[5]
intensity = np.random.uniform(intensity_range[0], intensity_range[1])
points_in_box, mask = get_points_in_box(points, box)
threshold = (y - dy / 2) + intensity * dy
points = points[np.logical_not(np.logical_and(mask, points[:, 1] <= threshold))]
return gt_boxes, points
def get_points_in_box(points, gt_box):
x, y, z = points[:, 0], points[:, 1], points[:, 2]
cx, cy, cz = gt_box[0], gt_box[1], gt_box[2]
dx, dy, dz, rz = gt_box[3], gt_box[4], gt_box[5], gt_box[6]
shift_x, shift_y, shift_z = x - cx, y - cy, z - cz
MARGIN = 1e-1
cosa, sina = math.cos(-rz), math.sin(-rz)
local_x = shift_x * cosa + shift_y * (-sina)
local_y = shift_x * sina + shift_y * cosa
mask = np.logical_and(abs(shift_z) <= dz / 2.0,
np.logical_and(abs(local_x) <= dx / 2.0 + MARGIN,
abs(local_y) <= dy / 2.0 + MARGIN))
points = points[mask]
return points, mask
def get_pyramids(boxes):
pyramid_orders = np.array([
[0, 1, 5, 4],
[4, 5, 6, 7],
[7, 6, 2, 3],
[3, 2, 1, 0],
[1, 2, 6, 5],
[0, 4, 7, 3]
])
boxes_corners = box_utils.boxes_to_corners_3d(boxes).reshape(-1, 24)
pyramid_list = []
for order in pyramid_orders:
# frustum polygon: 5 corners, 5 surfaces
pyramid = np.concatenate((
boxes[:, 0:3],
boxes_corners[:, 3 * order[0]: 3 * order[0] + 3],
boxes_corners[:, 3 * order[1]: 3 * order[1] + 3],
boxes_corners[:, 3 * order[2]: 3 * order[2] + 3],
boxes_corners[:, 3 * order[3]: 3 * order[3] + 3]), axis=1)
pyramid_list.append(pyramid[:, None, :])
pyramids = np.concatenate(pyramid_list, axis=1) # [N, 6, 15], 15=5*3
return pyramids
def one_hot(x, num_class=1):
if num_class is None:
num_class = 1
ohx = np.zeros((len(x), num_class))
ohx[range(len(x)), x] = 1
return ohx
def points_in_pyramids_mask(points, pyramids):
pyramids = pyramids.reshape(-1, 5, 3)
flags = np.zeros((points.shape[0], pyramids.shape[0]), dtype=np.bool)
for i, pyramid in enumerate(pyramids):
flags[:, i] = np.logical_or(flags[:, i], box_utils.in_hull(points[:, 0:3], pyramid))
return flags
def local_pyramid_dropout(gt_boxes, points, dropout_prob, pyramids=None):
if pyramids is None:
pyramids = get_pyramids(gt_boxes).reshape([-1, 6, 5, 3]) # each six surface of boxes: [num_boxes, 6, 15=3*5]
drop_pyramid_indices = np.random.randint(0, 6, (pyramids.shape[0]))
drop_pyramid_one_hot = one_hot(drop_pyramid_indices, num_class=6)
drop_box_mask = np.random.uniform(0, 1, (pyramids.shape[0])) <= dropout_prob
if np.sum(drop_box_mask) != 0:
drop_pyramid_mask = (np.tile(drop_box_mask[:, None], [1, 6]) * drop_pyramid_one_hot) > 0
drop_pyramids = pyramids[drop_pyramid_mask]
point_masks = points_in_pyramids_mask(points, drop_pyramids)
points = points[np.logical_not(point_masks.any(-1))]
# print(drop_box_mask)
pyramids = pyramids[np.logical_not(drop_box_mask)]
return gt_boxes, points, pyramids
def local_pyramid_sparsify(gt_boxes, points, prob, max_num_pts, pyramids=None):
if pyramids is None:
pyramids = get_pyramids(gt_boxes).reshape([-1, 6, 5, 3]) # each six surface of boxes: [num_boxes, 6, 15=3*5]
if pyramids.shape[0] > 0:
sparsity_prob, sparsity_num = prob, max_num_pts
sparsify_pyramid_indices = np.random.randint(0, 6, (pyramids.shape[0]))
sparsify_pyramid_one_hot = one_hot(sparsify_pyramid_indices, num_class=6)
sparsify_box_mask = np.random.uniform(0, 1, (pyramids.shape[0])) <= sparsity_prob
sparsify_pyramid_mask = (np.tile(sparsify_box_mask[:, None], [1, 6]) * sparsify_pyramid_one_hot) > 0
# print(sparsify_box_mask)
pyramid_sampled = pyramids[sparsify_pyramid_mask] # (-1,6,5,3)[(num_sample,6)]
# print(pyramid_sampled.shape)
pyramid_sampled_point_masks = points_in_pyramids_mask(points, pyramid_sampled)
pyramid_sampled_points_num = pyramid_sampled_point_masks.sum(0) # the number of points in each surface pyramid
valid_pyramid_sampled_mask = pyramid_sampled_points_num > sparsity_num # only much than sparsity_num should be sparse
sparsify_pyramids = pyramid_sampled[valid_pyramid_sampled_mask]
if sparsify_pyramids.shape[0] > 0:
point_masks = pyramid_sampled_point_masks[:, valid_pyramid_sampled_mask]
remain_points = points[
np.logical_not(point_masks.any(-1))] # points which outside the down sampling pyramid
to_sparsify_points = [points[point_masks[:, i]] for i in range(point_masks.shape[1])]
sparsified_points = []
for sample in to_sparsify_points:
sampled_indices = np.random.choice(sample.shape[0], size=sparsity_num, replace=False)
sparsified_points.append(sample[sampled_indices])
sparsified_points = np.concatenate(sparsified_points, axis=0)
points = np.concatenate([remain_points, sparsified_points], axis=0)
pyramids = pyramids[np.logical_not(sparsify_box_mask)]
return gt_boxes, points, pyramids
def local_pyramid_swap(gt_boxes, points, prob, max_num_pts, pyramids=None):
def get_points_ratio(points, pyramid):
surface_center = (pyramid[3:6] + pyramid[6:9] + pyramid[9:12] + pyramid[12:]) / 4.0
vector_0, vector_1, vector_2 = pyramid[6:9] - pyramid[3:6], pyramid[12:] - pyramid[3:6], pyramid[0:3] - surface_center
alphas = ((points[:, 0:3] - pyramid[3:6]) * vector_0).sum(-1) / np.power(vector_0, 2).sum()
betas = ((points[:, 0:3] - pyramid[3:6]) * vector_1).sum(-1) / np.power(vector_1, 2).sum()
gammas = ((points[:, 0:3] - surface_center) * vector_2).sum(-1) / np.power(vector_2, 2).sum()
return [alphas, betas, gammas]
def recover_points_by_ratio(points_ratio, pyramid):
alphas, betas, gammas = points_ratio
surface_center = (pyramid[3:6] + pyramid[6:9] + pyramid[9:12] + pyramid[12:]) / 4.0
vector_0, vector_1, vector_2 = pyramid[6:9] - pyramid[3:6], pyramid[12:] - pyramid[3:6], pyramid[0:3] - surface_center
points = (alphas[:, None] * vector_0 + betas[:, None] * vector_1) + pyramid[3:6] + gammas[:, None] * vector_2
return points
def recover_points_intensity_by_ratio(points_intensity_ratio, max_intensity, min_intensity):
return points_intensity_ratio * (max_intensity - min_intensity) + min_intensity
# swap partition
if pyramids is None:
pyramids = get_pyramids(gt_boxes).reshape([-1, 6, 5, 3]) # each six surface of boxes: [num_boxes, 6, 15=3*5]
swap_prob, num_thres = prob, max_num_pts
swap_pyramid_mask = np.random.uniform(0, 1, (pyramids.shape[0])) <= swap_prob
if swap_pyramid_mask.sum() > 0:
point_masks = points_in_pyramids_mask(points, pyramids)
point_nums = point_masks.sum(0).reshape(pyramids.shape[0], -1) # [N, 6]
non_zero_pyramids_mask = point_nums > num_thres # ingore dropout pyramids or highly occluded pyramids
selected_pyramids = non_zero_pyramids_mask * swap_pyramid_mask[:,
None] # selected boxes and all their valid pyramids
# print(selected_pyramids)
if selected_pyramids.sum() > 0:
# get to_swap pyramids
index_i, index_j = np.nonzero(selected_pyramids)
selected_pyramid_indices = [np.random.choice(index_j[index_i == i]) \
if e and (index_i == i).any() else 0 for i, e in
enumerate(swap_pyramid_mask)]
selected_pyramids_mask = selected_pyramids * one_hot(selected_pyramid_indices, num_class=6) == 1
to_swap_pyramids = pyramids[selected_pyramids_mask]
# get swapped pyramids
index_i, index_j = np.nonzero(selected_pyramids_mask)
non_zero_pyramids_mask[selected_pyramids_mask] = False
swapped_index_i = np.array([np.random.choice(np.where(non_zero_pyramids_mask[:, j])[0]) if \
np.where(non_zero_pyramids_mask[:, j])[0].shape[0] > 0 else
index_i[i] for i, j in enumerate(index_j.tolist())])
swapped_indicies = np.concatenate([swapped_index_i[:, None], index_j[:, None]], axis=1)
swapped_pyramids = pyramids[
swapped_indicies[:, 0].astype(np.int32), swapped_indicies[:, 1].astype(np.int32)]
# concat to_swap&swapped pyramids
swap_pyramids = np.concatenate([to_swap_pyramids, swapped_pyramids], axis=0)
swap_point_masks = points_in_pyramids_mask(points, swap_pyramids)
remain_points = points[np.logical_not(swap_point_masks.any(-1))]
# swap pyramids
points_res = []
num_swapped_pyramids = swapped_pyramids.shape[0]
for i in range(num_swapped_pyramids):
to_swap_pyramid = to_swap_pyramids[i]
swapped_pyramid = swapped_pyramids[i]
to_swap_points = points[swap_point_masks[:, i]]
swapped_points = points[swap_point_masks[:, i + num_swapped_pyramids]]
# for intensity transform
to_swap_points_intensity_ratio = (to_swap_points[:, -1:] - to_swap_points[:, -1:].min()) / \
np.clip(
(to_swap_points[:, -1:].max() - to_swap_points[:, -1:].min()),
1e-6, 1)
swapped_points_intensity_ratio = (swapped_points[:, -1:] - swapped_points[:, -1:].min()) / \
np.clip(
(swapped_points[:, -1:].max() - swapped_points[:, -1:].min()),
1e-6, 1)
to_swap_points_ratio = get_points_ratio(to_swap_points, to_swap_pyramid.reshape(15))
swapped_points_ratio = get_points_ratio(swapped_points, swapped_pyramid.reshape(15))
new_to_swap_points = recover_points_by_ratio(swapped_points_ratio, to_swap_pyramid.reshape(15))
new_swapped_points = recover_points_by_ratio(to_swap_points_ratio, swapped_pyramid.reshape(15))
# for intensity transform
new_to_swap_points_intensity = recover_points_intensity_by_ratio(
swapped_points_intensity_ratio, to_swap_points[:, -1:].max(),
to_swap_points[:, -1:].min())
new_swapped_points_intensity = recover_points_intensity_by_ratio(
to_swap_points_intensity_ratio, swapped_points[:, -1:].max(),
swapped_points[:, -1:].min())
# new_to_swap_points = np.concatenate([new_to_swap_points, swapped_points[:, -1:]], axis=1)
# new_swapped_points = np.concatenate([new_swapped_points, to_swap_points[:, -1:]], axis=1)
new_to_swap_points = np.concatenate([new_to_swap_points, new_to_swap_points_intensity], axis=1)
new_swapped_points = np.concatenate([new_swapped_points, new_swapped_points_intensity], axis=1)
points_res.append(new_to_swap_points)
points_res.append(new_swapped_points)
points_res = np.concatenate(points_res, axis=0)
points = np.concatenate([remain_points, points_res], axis=0)
return gt_boxes, points