Files
OpenPCDet/pcdet/datasets/augmentor/data_augmentor.py

320 lines
13 KiB
Python
Raw Permalink Normal View History

2025-09-21 20:18:31 +08:00
from functools import partial
import numpy as np
from PIL import Image
from ...utils import common_utils
from . import augmentor_utils, database_sampler
class DataAugmentor(object):
def __init__(self, root_path, augmentor_configs, class_names, logger=None):
self.root_path = root_path
self.class_names = class_names
self.logger = logger
self.data_augmentor_queue = []
aug_config_list = augmentor_configs if isinstance(augmentor_configs, list) \
else augmentor_configs.AUG_CONFIG_LIST
for cur_cfg in aug_config_list:
if not isinstance(augmentor_configs, list):
if cur_cfg.NAME in augmentor_configs.DISABLE_AUG_LIST:
continue
cur_augmentor = getattr(self, cur_cfg.NAME)(config=cur_cfg)
self.data_augmentor_queue.append(cur_augmentor)
def disable_augmentation(self, augmentor_configs):
self.data_augmentor_queue = []
aug_config_list = augmentor_configs if isinstance(augmentor_configs, list) \
else augmentor_configs.AUG_CONFIG_LIST
for cur_cfg in aug_config_list:
if not isinstance(augmentor_configs, list):
if cur_cfg.NAME in augmentor_configs.DISABLE_AUG_LIST:
continue
cur_augmentor = getattr(self, cur_cfg.NAME)(config=cur_cfg)
self.data_augmentor_queue.append(cur_augmentor)
def gt_sampling(self, config=None):
db_sampler = database_sampler.DataBaseSampler(
root_path=self.root_path,
sampler_cfg=config,
class_names=self.class_names,
logger=self.logger
)
return db_sampler
def __getstate__(self):
d = dict(self.__dict__)
del d['logger']
return d
def __setstate__(self, d):
self.__dict__.update(d)
def random_world_flip(self, data_dict=None, config=None):
if data_dict is None:
return partial(self.random_world_flip, config=config)
gt_boxes, points = data_dict['gt_boxes'], data_dict['points']
for cur_axis in config['ALONG_AXIS_LIST']:
assert cur_axis in ['x', 'y']
gt_boxes, points, enable = getattr(augmentor_utils, 'random_flip_along_%s' % cur_axis)(
gt_boxes, points, return_flip=True
)
data_dict['flip_%s'%cur_axis] = enable
if 'roi_boxes' in data_dict.keys():
num_frame, num_rois,dim = data_dict['roi_boxes'].shape
roi_boxes, _, _ = getattr(augmentor_utils, 'random_flip_along_%s' % cur_axis)(
data_dict['roi_boxes'].reshape(-1,dim), np.zeros([1,3]), return_flip=True, enable=enable
)
data_dict['roi_boxes'] = roi_boxes.reshape(num_frame, num_rois,dim)
data_dict['gt_boxes'] = gt_boxes
data_dict['points'] = points
return data_dict
def random_world_rotation(self, data_dict=None, config=None):
if data_dict is None:
return partial(self.random_world_rotation, config=config)
rot_range = config['WORLD_ROT_ANGLE']
if not isinstance(rot_range, list):
rot_range = [-rot_range, rot_range]
gt_boxes, points, noise_rot = augmentor_utils.global_rotation(
data_dict['gt_boxes'], data_dict['points'], rot_range=rot_range, return_rot=True
)
if 'roi_boxes' in data_dict.keys():
num_frame, num_rois,dim = data_dict['roi_boxes'].shape
roi_boxes, _, _ = augmentor_utils.global_rotation(
data_dict['roi_boxes'].reshape(-1, dim), np.zeros([1, 3]), rot_range=rot_range, return_rot=True, noise_rotation=noise_rot)
data_dict['roi_boxes'] = roi_boxes.reshape(num_frame, num_rois,dim)
data_dict['gt_boxes'] = gt_boxes
data_dict['points'] = points
data_dict['noise_rot'] = noise_rot
return data_dict
def random_world_scaling(self, data_dict=None, config=None):
if data_dict is None:
return partial(self.random_world_scaling, config=config)
if 'roi_boxes' in data_dict.keys():
gt_boxes, roi_boxes, points, noise_scale = augmentor_utils.global_scaling_with_roi_boxes(
data_dict['gt_boxes'], data_dict['roi_boxes'], data_dict['points'], config['WORLD_SCALE_RANGE'], return_scale=True
)
data_dict['roi_boxes'] = roi_boxes
else:
gt_boxes, points, noise_scale = augmentor_utils.global_scaling(
data_dict['gt_boxes'], data_dict['points'], config['WORLD_SCALE_RANGE'], return_scale=True
)
data_dict['gt_boxes'] = gt_boxes
data_dict['points'] = points
data_dict['noise_scale'] = noise_scale
return data_dict
def random_image_flip(self, data_dict=None, config=None):
if data_dict is None:
return partial(self.random_image_flip, config=config)
images = data_dict["images"]
depth_maps = data_dict["depth_maps"]
gt_boxes = data_dict['gt_boxes']
gt_boxes2d = data_dict["gt_boxes2d"]
calib = data_dict["calib"]
for cur_axis in config['ALONG_AXIS_LIST']:
assert cur_axis in ['horizontal']
images, depth_maps, gt_boxes = getattr(augmentor_utils, 'random_image_flip_%s' % cur_axis)(
images, depth_maps, gt_boxes, calib,
)
data_dict['images'] = images
data_dict['depth_maps'] = depth_maps
data_dict['gt_boxes'] = gt_boxes
return data_dict
def random_world_translation(self, data_dict=None, config=None):
if data_dict is None:
return partial(self.random_world_translation, config=config)
noise_translate_std = config['NOISE_TRANSLATE_STD']
assert len(noise_translate_std) == 3
noise_translate = np.array([
np.random.normal(0, noise_translate_std[0], 1),
np.random.normal(0, noise_translate_std[1], 1),
np.random.normal(0, noise_translate_std[2], 1),
], dtype=np.float32).T
gt_boxes, points = data_dict['gt_boxes'], data_dict['points']
points[:, :3] += noise_translate
gt_boxes[:, :3] += noise_translate
if 'roi_boxes' in data_dict.keys():
data_dict['roi_boxes'][:, :3] += noise_translate
data_dict['gt_boxes'] = gt_boxes
data_dict['points'] = points
data_dict['noise_translate'] = noise_translate
return data_dict
def random_local_translation(self, data_dict=None, config=None):
"""
Please check the correctness of it before using.
"""
if data_dict is None:
return partial(self.random_local_translation, config=config)
offset_range = config['LOCAL_TRANSLATION_RANGE']
gt_boxes, points = data_dict['gt_boxes'], data_dict['points']
for cur_axis in config['ALONG_AXIS_LIST']:
assert cur_axis in ['x', 'y', 'z']
gt_boxes, points = getattr(augmentor_utils, 'random_local_translation_along_%s' % cur_axis)(
gt_boxes, points, offset_range,
)
data_dict['gt_boxes'] = gt_boxes
data_dict['points'] = points
return data_dict
def random_local_rotation(self, data_dict=None, config=None):
"""
Please check the correctness of it before using.
"""
if data_dict is None:
return partial(self.random_local_rotation, config=config)
rot_range = config['LOCAL_ROT_ANGLE']
if not isinstance(rot_range, list):
rot_range = [-rot_range, rot_range]
gt_boxes, points = augmentor_utils.local_rotation(
data_dict['gt_boxes'], data_dict['points'], rot_range=rot_range
)
data_dict['gt_boxes'] = gt_boxes
data_dict['points'] = points
return data_dict
def random_local_scaling(self, data_dict=None, config=None):
"""
Please check the correctness of it before using.
"""
if data_dict is None:
return partial(self.random_local_scaling, config=config)
gt_boxes, points = augmentor_utils.local_scaling(
data_dict['gt_boxes'], data_dict['points'], config['LOCAL_SCALE_RANGE']
)
data_dict['gt_boxes'] = gt_boxes
data_dict['points'] = points
return data_dict
def random_world_frustum_dropout(self, data_dict=None, config=None):
"""
Please check the correctness of it before using.
"""
if data_dict is None:
return partial(self.random_world_frustum_dropout, config=config)
intensity_range = config['INTENSITY_RANGE']
gt_boxes, points = data_dict['gt_boxes'], data_dict['points']
for direction in config['DIRECTION']:
assert direction in ['top', 'bottom', 'left', 'right']
gt_boxes, points = getattr(augmentor_utils, 'global_frustum_dropout_%s' % direction)(
gt_boxes, points, intensity_range,
)
data_dict['gt_boxes'] = gt_boxes
data_dict['points'] = points
return data_dict
def random_local_frustum_dropout(self, data_dict=None, config=None):
"""
Please check the correctness of it before using.
"""
if data_dict is None:
return partial(self.random_local_frustum_dropout, config=config)
intensity_range = config['INTENSITY_RANGE']
gt_boxes, points = data_dict['gt_boxes'], data_dict['points']
for direction in config['DIRECTION']:
assert direction in ['top', 'bottom', 'left', 'right']
gt_boxes, points = getattr(augmentor_utils, 'local_frustum_dropout_%s' % direction)(
gt_boxes, points, intensity_range,
)
data_dict['gt_boxes'] = gt_boxes
data_dict['points'] = points
return data_dict
def random_local_pyramid_aug(self, data_dict=None, config=None):
"""
Refer to the paper:
SE-SSD: Self-Ensembling Single-Stage Object Detector From Point Cloud
"""
if data_dict is None:
return partial(self.random_local_pyramid_aug, config=config)
gt_boxes, points = data_dict['gt_boxes'], data_dict['points']
gt_boxes, points, pyramids = augmentor_utils.local_pyramid_dropout(gt_boxes, points, config['DROP_PROB'])
gt_boxes, points, pyramids = augmentor_utils.local_pyramid_sparsify(gt_boxes, points,
config['SPARSIFY_PROB'],
config['SPARSIFY_MAX_NUM'],
pyramids)
gt_boxes, points = augmentor_utils.local_pyramid_swap(gt_boxes, points,
config['SWAP_PROB'],
config['SWAP_MAX_NUM'],
pyramids)
data_dict['gt_boxes'] = gt_boxes
data_dict['points'] = points
return data_dict
def imgaug(self, data_dict=None, config=None):
if data_dict is None:
return partial(self.imgaug, config=config)
imgs = data_dict["camera_imgs"]
img_process_infos = data_dict['img_process_infos']
new_imgs = []
for img, img_process_info in zip(imgs, img_process_infos):
flip = False
if config.RAND_FLIP and np.random.choice([0, 1]):
flip = True
rotate = np.random.uniform(*config.ROT_LIM)
# aug images
if flip:
img = img.transpose(method=Image.FLIP_LEFT_RIGHT)
img = img.rotate(rotate)
img_process_info[2] = flip
img_process_info[3] = rotate
new_imgs.append(img)
data_dict["camera_imgs"] = new_imgs
return data_dict
def forward(self, data_dict):
"""
Args:
data_dict:
points: (N, 3 + C_in)
gt_boxes: optional, (N, 7) [x, y, z, dx, dy, dz, heading]
gt_names: optional, (N), string
...
Returns:
"""
for cur_augmentor in self.data_augmentor_queue:
data_dict = cur_augmentor(data_dict=data_dict)
data_dict['gt_boxes'][:, 6] = common_utils.limit_period(
data_dict['gt_boxes'][:, 6], offset=0.5, period=2 * np.pi
)
# if 'calib' in data_dict:
# data_dict.pop('calib')
if 'road_plane' in data_dict:
data_dict.pop('road_plane')
if 'gt_boxes_mask' in data_dict:
gt_boxes_mask = data_dict['gt_boxes_mask']
data_dict['gt_boxes'] = data_dict['gt_boxes'][gt_boxes_mask]
data_dict['gt_names'] = data_dict['gt_names'][gt_boxes_mask]
if 'gt_boxes2d' in data_dict:
data_dict['gt_boxes2d'] = data_dict['gt_boxes2d'][gt_boxes_mask]
data_dict.pop('gt_boxes_mask')
return data_dict