Files
OpenPCDet/pcdet/models/backbones_3d/vfe/dynamic_pillar_vfe.py

241 lines
9.5 KiB
Python
Raw Normal View History

2025-09-21 20:18:59 +08:00
import torch
import torch.nn as nn
import torch.nn.functional as F
try:
import torch_scatter
except Exception as e:
# Incase someone doesn't want to use dynamic pillar vfe and hasn't installed torch_scatter
pass
from .vfe_template import VFETemplate
class PFNLayerV2(nn.Module):
def __init__(self,
in_channels,
out_channels,
use_norm=True,
last_layer=False):
super().__init__()
self.last_vfe = last_layer
self.use_norm = use_norm
if not self.last_vfe:
out_channels = out_channels // 2
if self.use_norm:
self.linear = nn.Linear(in_channels, out_channels, bias=False)
self.norm = nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01)
else:
self.linear = nn.Linear(in_channels, out_channels, bias=True)
self.relu = nn.ReLU()
def forward(self, inputs, unq_inv):
x = self.linear(inputs)
x = self.norm(x) if self.use_norm else x
x = self.relu(x)
x_max = torch_scatter.scatter_max(x, unq_inv, dim=0)[0]
if self.last_vfe:
return x_max
else:
x_concatenated = torch.cat([x, x_max[unq_inv, :]], dim=1)
return x_concatenated
class DynamicPillarVFE(VFETemplate):
def __init__(self, model_cfg, num_point_features, voxel_size, grid_size, point_cloud_range, **kwargs):
super().__init__(model_cfg=model_cfg)
self.use_norm = self.model_cfg.USE_NORM
self.with_distance = self.model_cfg.WITH_DISTANCE
self.use_absolute_xyz = self.model_cfg.USE_ABSLOTE_XYZ
num_point_features += 6 if self.use_absolute_xyz else 3
if self.with_distance:
num_point_features += 1
self.num_filters = self.model_cfg.NUM_FILTERS
assert len(self.num_filters) > 0
num_filters = [num_point_features] + list(self.num_filters)
pfn_layers = []
for i in range(len(num_filters) - 1):
in_filters = num_filters[i]
out_filters = num_filters[i + 1]
pfn_layers.append(
PFNLayerV2(in_filters, out_filters, self.use_norm, last_layer=(i >= len(num_filters) - 2))
)
self.pfn_layers = nn.ModuleList(pfn_layers)
self.voxel_x = voxel_size[0]
self.voxel_y = voxel_size[1]
self.voxel_z = voxel_size[2]
self.x_offset = self.voxel_x / 2 + point_cloud_range[0]
self.y_offset = self.voxel_y / 2 + point_cloud_range[1]
self.z_offset = self.voxel_z / 2 + point_cloud_range[2]
self.scale_xy = grid_size[0] * grid_size[1]
self.scale_y = grid_size[1]
self.grid_size = torch.tensor(grid_size).cuda()
self.voxel_size = torch.tensor(voxel_size).cuda()
self.point_cloud_range = torch.tensor(point_cloud_range).cuda()
def get_output_feature_dim(self):
return self.num_filters[-1]
def forward(self, batch_dict, **kwargs):
points = batch_dict['points'] # (batch_idx, x, y, z, i, e)
points_coords = torch.floor((points[:, [1,2]] - self.point_cloud_range[[0,1]]) / self.voxel_size[[0,1]]).int()
mask = ((points_coords >= 0) & (points_coords < self.grid_size[[0,1]])).all(dim=1)
points = points[mask]
points_coords = points_coords[mask]
points_xyz = points[:, [1, 2, 3]].contiguous()
merge_coords = points[:, 0].int() * self.scale_xy + \
points_coords[:, 0] * self.scale_y + \
points_coords[:, 1]
unq_coords, unq_inv, unq_cnt = torch.unique(merge_coords, return_inverse=True, return_counts=True, dim=0)
points_mean = torch_scatter.scatter_mean(points_xyz, unq_inv, dim=0)
f_cluster = points_xyz - points_mean[unq_inv, :]
f_center = torch.zeros_like(points_xyz)
f_center[:, 0] = points_xyz[:, 0] - (points_coords[:, 0].to(points_xyz.dtype) * self.voxel_x + self.x_offset)
f_center[:, 1] = points_xyz[:, 1] - (points_coords[:, 1].to(points_xyz.dtype) * self.voxel_y + self.y_offset)
f_center[:, 2] = points_xyz[:, 2] - self.z_offset
if self.use_absolute_xyz:
features = [points[:, 1:], f_cluster, f_center]
else:
features = [points[:, 4:], f_cluster, f_center]
if self.with_distance:
points_dist = torch.norm(points[:, 1:4], 2, dim=1, keepdim=True)
features.append(points_dist)
features = torch.cat(features, dim=-1)
for pfn in self.pfn_layers:
features = pfn(features, unq_inv)
# features = self.linear1(features)
# features_max = torch_scatter.scatter_max(features, unq_inv, dim=0)[0]
# features = torch.cat([features, features_max[unq_inv, :]], dim=1)
# features = self.linear2(features)
# features = torch_scatter.scatter_max(features, unq_inv, dim=0)[0]
# generate voxel coordinates
unq_coords = unq_coords.int()
voxel_coords = torch.stack((unq_coords // self.scale_xy,
(unq_coords % self.scale_xy) // self.scale_y,
unq_coords % self.scale_y,
torch.zeros(unq_coords.shape[0]).to(unq_coords.device).int()
), dim=1)
voxel_coords = voxel_coords[:, [0, 3, 2, 1]]
batch_dict['voxel_features'] = batch_dict['pillar_features'] = features
batch_dict['voxel_coords'] = voxel_coords
return batch_dict
class DynamicPillarVFESimple2D(VFETemplate):
def __init__(self, model_cfg, num_point_features, voxel_size, grid_size, point_cloud_range, **kwargs):
super().__init__(model_cfg=model_cfg)
self.use_norm = self.model_cfg.USE_NORM
self.with_distance = self.model_cfg.WITH_DISTANCE
self.use_absolute_xyz = self.model_cfg.USE_ABSLOTE_XYZ
# self.use_cluster_xyz = self.model_cfg.get('USE_CLUSTER_XYZ', True)
if self.use_absolute_xyz:
num_point_features += 3
# if self.use_cluster_xyz:
# num_point_features += 3
if self.with_distance:
num_point_features += 1
self.num_filters = self.model_cfg.NUM_FILTERS
assert len(self.num_filters) > 0
num_filters = [num_point_features] + list(self.num_filters)
pfn_layers = []
for i in range(len(num_filters) - 1):
in_filters = num_filters[i]
out_filters = num_filters[i + 1]
pfn_layers.append(
PFNLayerV2(in_filters, out_filters, self.use_norm, last_layer=(i >= len(num_filters) - 2))
)
self.pfn_layers = nn.ModuleList(pfn_layers)
self.voxel_x = voxel_size[0]
self.voxel_y = voxel_size[1]
self.voxel_z = voxel_size[2]
self.x_offset = self.voxel_x / 2 + point_cloud_range[0]
self.y_offset = self.voxel_y / 2 + point_cloud_range[1]
self.z_offset = self.voxel_z / 2 + point_cloud_range[2]
self.scale_xy = grid_size[0] * grid_size[1]
self.scale_y = grid_size[1]
self.grid_size = torch.tensor(grid_size[:2]).cuda()
self.voxel_size = torch.tensor(voxel_size).cuda()
self.point_cloud_range = torch.tensor(point_cloud_range).cuda()
def get_output_feature_dim(self):
return self.num_filters[-1]
def forward(self, batch_dict, **kwargs):
points = batch_dict['points'] # (batch_idx, x, y, z, i, e)
points_coords = torch.floor(
(points[:, [1, 2]] - self.point_cloud_range[[0, 1]]) / self.voxel_size[[0, 1]]).int()
mask = ((points_coords >= 0) & (points_coords < self.grid_size[[0, 1]])).all(dim=1)
points = points[mask]
points_coords = points_coords[mask]
points_xyz = points[:, [1, 2, 3]].contiguous()
merge_coords = points[:, 0].int() * self.scale_xy + \
points_coords[:, 0] * self.scale_y + \
points_coords[:, 1]
unq_coords, unq_inv, unq_cnt = torch.unique(merge_coords, return_inverse=True, return_counts=True, dim=0)
f_center = torch.zeros_like(points_xyz)
f_center[:, 0] = points_xyz[:, 0] - (points_coords[:, 0].to(points_xyz.dtype) * self.voxel_x + self.x_offset)
f_center[:, 1] = points_xyz[:, 1] - (points_coords[:, 1].to(points_xyz.dtype) * self.voxel_y + self.y_offset)
f_center[:, 2] = points_xyz[:, 2] - self.z_offset
features = [f_center]
if self.use_absolute_xyz:
features.append(points[:, 1:])
else:
features.append(points[:, 4:])
# if self.use_cluster_xyz:
# points_mean = torch_scatter.scatter_mean(points_xyz, unq_inv, dim=0)
# f_cluster = points_xyz - points_mean[unq_inv, :]
# features.append(f_cluster)
if self.with_distance:
points_dist = torch.norm(points[:, 1:4], 2, dim=1, keepdim=True)
features.append(points_dist)
features = torch.cat(features, dim=-1)
for pfn in self.pfn_layers:
features = pfn(features, unq_inv)
# generate voxel coordinates
unq_coords = unq_coords.int()
pillar_coords = torch.stack((unq_coords // self.scale_xy,
(unq_coords % self.scale_xy) // self.scale_y,
unq_coords % self.scale_y,
), dim=1)
pillar_coords = pillar_coords[:, [0, 2, 1]]
batch_dict['pillar_features'] = features
batch_dict['pillar_coords'] = pillar_coords
return batch_dict