From 04e5d0ae367e65656d1043afeadd321c64219507 Mon Sep 17 00:00:00 2001 From: inter Date: Sun, 21 Sep 2025 20:18:52 +0800 Subject: [PATCH] Add File --- pcdet/models/backbones_3d/dsvt.py | 616 ++++++++++++++++++++++++++++++ 1 file changed, 616 insertions(+) create mode 100644 pcdet/models/backbones_3d/dsvt.py diff --git a/pcdet/models/backbones_3d/dsvt.py b/pcdet/models/backbones_3d/dsvt.py new file mode 100644 index 0000000..8c3e279 --- /dev/null +++ b/pcdet/models/backbones_3d/dsvt.py @@ -0,0 +1,616 @@ +import torch +import torch.nn as nn +from torch.utils.checkpoint import checkpoint +from math import ceil + +from pcdet.models.model_utils.dsvt_utils import get_window_coors, get_inner_win_inds_cuda, get_pooling_index, get_continous_inds +from pcdet.models.model_utils.dsvt_utils import PositionEmbeddingLearned + + +class DSVT(nn.Module): + '''Dynamic Sparse Voxel Transformer Backbone. + Args: + INPUT_LAYER: Config of input layer, which converts the output of vfe to dsvt input. + block_name (list[string]): Name of blocks for each stage. Length: stage_num. + set_info (list[list[int, int]]): A list of set config for each stage. Eelement i contains + [set_size, block_num], where set_size is the number of voxel in a set and block_num is the + number of blocks for stage i. Length: stage_num. + d_model (list[int]): Number of input channels for each stage. Length: stage_num. + nhead (list[int]): Number of attention heads for each stage. Length: stage_num. + dim_feedforward (list[int]): Dimensions of the feedforward network in set attention for each stage. + Length: stage num. + dropout (float): Drop rate of set attention. + activation (string): Name of activation layer in set attention. + reduction_type (string): Pooling method between stages. One of: "attention", "maxpool", "linear". + output_shape (tuple[int, int]): Shape of output bev feature. + conv_out_channel (int): Number of output channels. + + ''' + def __init__(self, model_cfg, **kwargs): + super().__init__() + + self.model_cfg = model_cfg + self.input_layer = DSVTInputLayer(self.model_cfg.INPUT_LAYER) + block_name = self.model_cfg.block_name + set_info = self.model_cfg.set_info + d_model = self.model_cfg.d_model + nhead = self.model_cfg.nhead + dim_feedforward = self.model_cfg.dim_feedforward + dropout = self.model_cfg.dropout + activation = self.model_cfg.activation + self.reduction_type = self.model_cfg.get('reduction_type', 'attention') + # save GPU memory + self.use_torch_ckpt = self.model_cfg.get('USE_CHECKPOINT', False) + + # Sparse Regional Attention Blocks + stage_num = len(block_name) + for stage_id in range(stage_num): + num_blocks_this_stage = set_info[stage_id][-1] + dmodel_this_stage = d_model[stage_id] + dfeed_this_stage = dim_feedforward[stage_id] + num_head_this_stage = nhead[stage_id] + block_name_this_stage = block_name[stage_id] + block_module = _get_block_module(block_name_this_stage) + block_list=[] + norm_list=[] + for i in range(num_blocks_this_stage): + block_list.append( + block_module(dmodel_this_stage, num_head_this_stage, dfeed_this_stage, + dropout, activation, batch_first=True) + ) + norm_list.append(nn.LayerNorm(dmodel_this_stage)) + self.__setattr__(f'stage_{stage_id}', nn.ModuleList(block_list)) + self.__setattr__(f'residual_norm_stage_{stage_id}', nn.ModuleList(norm_list)) + + # apply pooling except the last stage + if stage_id < stage_num-1: + downsample_window = self.model_cfg.INPUT_LAYER.downsample_stride[stage_id] + dmodel_next_stage = d_model[stage_id+1] + pool_volume = torch.IntTensor(downsample_window).prod().item() + if self.reduction_type == 'linear': + cat_feat_dim = dmodel_this_stage * torch.IntTensor(downsample_window).prod().item() + self.__setattr__(f'stage_{stage_id}_reduction', Stage_Reduction_Block(cat_feat_dim, dmodel_next_stage)) + elif self.reduction_type == 'maxpool': + self.__setattr__(f'stage_{stage_id}_reduction', torch.nn.MaxPool1d(pool_volume)) + elif self.reduction_type == 'attention': + self.__setattr__(f'stage_{stage_id}_reduction', Stage_ReductionAtt_Block(dmodel_this_stage, pool_volume)) + else: + raise NotImplementedError + + self.num_shifts = [2] * stage_num + self.output_shape = self.model_cfg.output_shape + self.stage_num = stage_num + self.set_info = set_info + self.num_point_features = self.model_cfg.conv_out_channel + + self._reset_parameters() + + def forward(self, batch_dict): + ''' + Args: + bacth_dict (dict): + The dict contains the following keys + - voxel_features (Tensor[float]): Voxel features after VFE. Shape of (N, d_model[0]), + where N is the number of input voxels. + - voxel_coords (Tensor[int]): Shape of (N, 4), corresponding voxel coordinates of each voxels. + Each row is (batch_id, z, y, x). + - ... + + Returns: + bacth_dict (dict): + The dict contains the following keys + - pillar_features (Tensor[float]): + - voxel_coords (Tensor[int]): + - ... + ''' + voxel_info = self.input_layer(batch_dict) + + voxel_feat = voxel_info['voxel_feats_stage0'] + set_voxel_inds_list = [[voxel_info[f'set_voxel_inds_stage{s}_shift{i}'] for i in range(self.num_shifts[s])] for s in range(self.stage_num)] + set_voxel_masks_list = [[voxel_info[f'set_voxel_mask_stage{s}_shift{i}'] for i in range(self.num_shifts[s])] for s in range(self.stage_num)] + pos_embed_list = [[[voxel_info[f'pos_embed_stage{s}_block{b}_shift{i}'] for i in range(self.num_shifts[s])] for b in range(self.set_info[s][1])] for s in range(self.stage_num)] + pooling_mapping_index = [voxel_info[f'pooling_mapping_index_stage{s+1}'] for s in range(self.stage_num-1)] + pooling_index_in_pool = [voxel_info[f'pooling_index_in_pool_stage{s+1}'] for s in range(self.stage_num-1)] + pooling_preholder_feats = [voxel_info[f'pooling_preholder_feats_stage{s+1}'] for s in range(self.stage_num-1)] + + output = voxel_feat + block_id = 0 + for stage_id in range(self.stage_num): + block_layers = self.__getattr__(f'stage_{stage_id}') + residual_norm_layers = self.__getattr__(f'residual_norm_stage_{stage_id}') + for i in range(len(block_layers)): + block = block_layers[i] + residual = output.clone() + if self.use_torch_ckpt==False: + output = block(output, set_voxel_inds_list[stage_id], set_voxel_masks_list[stage_id], pos_embed_list[stage_id][i], \ + block_id=block_id) + else: + output = checkpoint(block, output, set_voxel_inds_list[stage_id], set_voxel_masks_list[stage_id], pos_embed_list[stage_id][i], block_id) + output = residual_norm_layers[i](output + residual) + block_id += 1 + if stage_id < self.stage_num - 1: + # pooling + prepool_features = pooling_preholder_feats[stage_id].type_as(output) + pooled_voxel_num = prepool_features.shape[0] + pool_volume = prepool_features.shape[1] + prepool_features[pooling_mapping_index[stage_id], pooling_index_in_pool[stage_id]] = output + prepool_features = prepool_features.view(prepool_features.shape[0], -1) + + if self.reduction_type == 'linear': + output = self.__getattr__(f'stage_{stage_id}_reduction')(prepool_features) + elif self.reduction_type == 'maxpool': + prepool_features = prepool_features.view(pooled_voxel_num, pool_volume, -1).permute(0, 2, 1) + output = self.__getattr__(f'stage_{stage_id}_reduction')(prepool_features).squeeze(-1) + elif self.reduction_type == 'attention': + prepool_features = prepool_features.view(pooled_voxel_num, pool_volume, -1).permute(0, 2, 1) + key_padding_mask = torch.zeros((pooled_voxel_num, pool_volume)).to(prepool_features.device).int() + output = self.__getattr__(f'stage_{stage_id}_reduction')(prepool_features, key_padding_mask) + else: + raise NotImplementedError + + batch_dict['pillar_features'] = batch_dict['voxel_features'] = output + batch_dict['voxel_coords'] = voxel_info[f'voxel_coors_stage{self.stage_num - 1}'] + return batch_dict + + def _reset_parameters(self): + for name, p in self.named_parameters(): + if p.dim() > 1 and 'scaler' not in name: + nn.init.xavier_uniform_(p) + + +class DSVTBlock(nn.Module): + ''' Consist of two encoder layer, shift and shift back. + ''' + def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, + activation="relu", batch_first=True): + super().__init__() + + encoder_1 = DSVT_EncoderLayer(d_model, nhead, dim_feedforward, dropout, + activation, batch_first) + encoder_2 = DSVT_EncoderLayer(d_model, nhead, dim_feedforward, dropout, + activation, batch_first) + self.encoder_list = nn.ModuleList([encoder_1, encoder_2]) + + def forward( + self, + src, + set_voxel_inds_list, + set_voxel_masks_list, + pos_embed_list, + block_id, + ): + num_shifts = 2 + output = src + # TODO: bug to be fixed, mismatch of pos_embed + for i in range(num_shifts): + set_id = i + shift_id = block_id % 2 + pos_embed_id = i + set_voxel_inds = set_voxel_inds_list[shift_id][set_id] + set_voxel_masks = set_voxel_masks_list[shift_id][set_id] + pos_embed = pos_embed_list[pos_embed_id] + layer = self.encoder_list[i] + output = layer(output, set_voxel_inds, set_voxel_masks, pos_embed) + + return output + + +class DSVT_EncoderLayer(nn.Module): + + def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, + activation="relu", batch_first=True, mlp_dropout=0): + super().__init__() + self.win_attn = SetAttention(d_model, nhead, dropout, dim_feedforward, activation, batch_first, mlp_dropout) + self.norm = nn.LayerNorm(d_model) + self.d_model = d_model + + def forward(self,src,set_voxel_inds,set_voxel_masks,pos=None): + identity = src + src = self.win_attn(src, pos, set_voxel_masks, set_voxel_inds) + src = src + identity + src = self.norm(src) + + return src + +class SetAttention(nn.Module): + + def __init__(self, d_model, nhead, dropout, dim_feedforward=2048, activation="relu", batch_first=True, mlp_dropout=0): + super().__init__() + self.nhead = nhead + if batch_first: + self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first) + else: + self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) + + # Implementation of Feedforward model + self.linear1 = nn.Linear(d_model, dim_feedforward) + self.dropout = nn.Dropout(mlp_dropout) + self.linear2 = nn.Linear(dim_feedforward, d_model) + self.d_model = d_model + self.norm1 = nn.LayerNorm(d_model) + self.norm2 = nn.LayerNorm(d_model) + self.dropout1 = nn.Identity() + self.dropout2 = nn.Identity() + + self.activation = _get_activation_fn(activation) + + def forward(self, src, pos=None, key_padding_mask=None, voxel_inds=None): + ''' + Args: + src (Tensor[float]): Voxel features with shape (N, C), where N is the number of voxels. + pos (Tensor[float]): Position embedding vectors with shape (N, C). + key_padding_mask (Tensor[bool]): Mask for redundant voxels within set. Shape of (set_num, set_size). + voxel_inds (Tensor[int]): Voxel indexs for each set. Shape of (set_num, set_size). + Returns: + src (Tensor[float]): Voxel features. + ''' + set_features = src[voxel_inds] + if pos is not None: + set_pos = pos[voxel_inds] + else: + set_pos = None + if pos is not None: + query = set_features + set_pos + key = set_features + set_pos + value = set_features + + if key_padding_mask is not None: + src2 = self.self_attn(query, key, value, key_padding_mask)[0] + else: + src2 = self.self_attn(query, key, value)[0] + + # map voxel featurs from set space to voxel space: (set_num, set_size, C) --> (N, C) + flatten_inds = voxel_inds.reshape(-1) + unique_flatten_inds, inverse = torch.unique(flatten_inds, return_inverse=True) + perm = torch.arange(inverse.size(0), dtype=inverse.dtype, device=inverse.device) + inverse, perm = inverse.flip([0]), perm.flip([0]) + perm = inverse.new_empty(unique_flatten_inds.size(0)).scatter_(0, inverse, perm) + src2 = src2.reshape(-1, self.d_model)[perm] + + # FFN layer + src = src + self.dropout1(src2) + src = self.norm1(src) + src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) + src = src + self.dropout2(src2) + src = self.norm2(src) + + return src + + +class Stage_Reduction_Block(nn.Module): + def __init__(self, input_channel, output_channel): + super().__init__() + self.linear1 = nn.Linear(input_channel, output_channel, bias=False) + self.norm = nn.LayerNorm(output_channel) + + def forward(self, x): + src = x + src = self.norm(self.linear1(x)) + return src + + +class Stage_ReductionAtt_Block(nn.Module): + def __init__(self, input_channel, pool_volume): + super().__init__() + self.pool_volume = pool_volume + self.query_func = torch.nn.MaxPool1d(pool_volume) + self.norm = nn.LayerNorm(input_channel) + self.self_attn = nn.MultiheadAttention(input_channel, 8, batch_first=True) + self.pos_embedding = nn.Parameter(torch.randn(pool_volume, input_channel)) + nn.init.normal_(self.pos_embedding, std=.01) + + def forward(self, x, key_padding_mask): + # x: [voxel_num, c_dim, pool_volume] + src = self.query_func(x).permute(0, 2, 1) # voxel_num, 1, c_dim + key = value = x.permute(0, 2, 1) + key = key + self.pos_embedding.unsqueeze(0).repeat(src.shape[0], 1, 1) + query = src.clone() + output = self.self_attn(query, key, value, key_padding_mask)[0] + src = self.norm(output + src).squeeze(1) + return src + + +def _get_activation_fn(activation): + """Return an activation function given a string""" + if activation == "relu": + return torch.nn.functional.relu + if activation == "gelu": + return torch.nn.functional.gelu + if activation == "glu": + return torch.nn.functional.glu + raise RuntimeError(F"activation should be relu/gelu, not {activation}.") + + +def _get_block_module(name): + """Return an block module given a string""" + if name == "DSVTBlock": + return DSVTBlock + raise RuntimeError(F"This Block not exist.") + + +class DSVTInputLayer(nn.Module): + ''' + This class converts the output of vfe to dsvt input. + We do in this class: + 1. Window partition: partition voxels to non-overlapping windows. + 2. Set partition: generate non-overlapped and size-equivalent local sets within each window. + 3. Pre-compute the downsample infomation between two consecutive stages. + 4. Pre-compute the position embedding vectors. + + Args: + sparse_shape (tuple[int, int, int]): Shape of input space (xdim, ydim, zdim). + window_shape (list[list[int, int, int]]): Window shapes (winx, winy, winz) in different stages. Length: stage_num. + downsample_stride (list[list[int, int, int]]): Downsample strides between two consecutive stages. + Element i is [ds_x, ds_y, ds_z], which is used between stage_i and stage_{i+1}. Length: stage_num - 1. + d_model (list[int]): Number of input channels for each stage. Length: stage_num. + set_info (list[list[int, int]]): A list of set config for each stage. Eelement i contains + [set_size, block_num], where set_size is the number of voxel in a set and block_num is the + number of blocks for stage i. Length: stage_num. + hybrid_factor (list[int, int, int]): Control the window shape in different blocks. + e.g. for block_{0} and block_{1} in stage_0, window shapes are [win_x, win_y, win_z] and + [win_x * h[0], win_y * h[1], win_z * h[2]] respectively. + shift_list (list): Shift window. Length: stage_num. + normalize_pos (bool): Whether to normalize coordinates in position embedding. + ''' + def __init__(self, model_cfg): + super().__init__() + + self.model_cfg = model_cfg + self.sparse_shape = self.model_cfg.sparse_shape + self.window_shape = self.model_cfg.window_shape + self.downsample_stride = self.model_cfg.downsample_stride + self.d_model = self.model_cfg.d_model + self.set_info = self.model_cfg.set_info + self.stage_num = len(self.d_model) + + self.hybrid_factor = self.model_cfg.hybrid_factor + self.window_shape = [[self.window_shape[s_id], [self.window_shape[s_id][coord_id] * self.hybrid_factor[coord_id] \ + for coord_id in range(3)]] for s_id in range(self.stage_num)] + self.shift_list = self.model_cfg.shifts_list + self.normalize_pos = self.model_cfg.normalize_pos + + self.num_shifts = [2,] * len(self.window_shape) + + self.sparse_shape_list = [self.sparse_shape] + # compute sparse shapes for each stage + for ds_stride in self.downsample_stride: + last_sparse_shape = self.sparse_shape_list[-1] + self.sparse_shape_list.append((ceil(last_sparse_shape[0]/ds_stride[0]), ceil(last_sparse_shape[1]/ds_stride[1]), ceil(last_sparse_shape[2]/ds_stride[2]))) + + # position embedding layers + self.posembed_layers = nn.ModuleList() + for i in range(len(self.set_info)): + input_dim = 3 if self.sparse_shape_list[i][-1] > 1 else 2 + stage_posembed_layers = nn.ModuleList() + for j in range(self.set_info[i][1]): + block_posembed_layers = nn.ModuleList() + for s in range(self.num_shifts[i]): + block_posembed_layers.append(PositionEmbeddingLearned(input_dim, self.d_model[i])) + stage_posembed_layers.append(block_posembed_layers) + self.posembed_layers.append(stage_posembed_layers) + + def forward(self, batch_dict): + ''' + Args: + bacth_dict (dict): + The dict contains the following keys + - voxel_features (Tensor[float]): Voxel features after VFE with shape (N, d_model[0]), + where N is the number of input voxels. + - voxel_coords (Tensor[int]): Shape of (N, 4), corresponding voxel coordinates of each voxels. + Each row is (batch_id, z, y, x). + - ... + + Returns: + voxel_info (dict): + The dict contains the following keys + - voxel_coors_stage{i} (Tensor[int]): Shape of (N_i, 4). N is the number of voxels in stage_i. + Each row is (batch_id, z, y, x). + - set_voxel_inds_stage{i}_shift{j} (Tensor[int]): Set partition index with shape (2, set_num, set_info[i][0]). + 2 indicates x-axis partition and y-axis partition. + - set_voxel_mask_stage{i}_shift{i} (Tensor[bool]): Key mask used in set attention with shape (2, set_num, set_info[i][0]). + - pos_embed_stage{i}_block{i}_shift{i} (Tensor[float]): Position embedding vectors with shape (N_i, d_model[i]). N_i is the + number of remain voxels in stage_i; + - pooling_mapping_index_stage{i} (Tensor[int]): Pooling region index used in pooling operation between stage_{i-1} and stage_{i} + with shape (N_{i-1}). + - pooling_index_in_pool_stage{i} (Tensor[int]): Index inner region with shape (N_{i-1}). Combined with pooling_mapping_index_stage{i}, + we can map each voxel in satge_{i-1} to pooling_preholder_feats_stage{i}, which are input of downsample operation. + - pooling_preholder_feats_stage{i} (Tensor[int]): Preholder features initial with value 0. + Shape of (N_{i}, downsample_stride[i-1].prob(), d_moel[i-1]), where prob() returns the product of all elements. + - ... + ''' + voxel_feats = batch_dict['voxel_features'] + voxel_coors = batch_dict['voxel_coords'].long() + + voxel_info = {} + voxel_info['voxel_feats_stage0'] = voxel_feats.clone() + voxel_info['voxel_coors_stage0'] = voxel_coors.clone() + + for stage_id in range(self.stage_num): + # window partition of corrsponding stage-map + voxel_info = self.window_partition(voxel_info, stage_id) + # generate set id of corrsponding stage-map + voxel_info = self.get_set(voxel_info, stage_id) + for block_id in range(self.set_info[stage_id][1]): + for shift_id in range(self.num_shifts[stage_id]): + voxel_info[f'pos_embed_stage{stage_id}_block{block_id}_shift{shift_id}'] = \ + self.get_pos_embed(voxel_info[f'coors_in_win_stage{stage_id}_shift{shift_id}'], stage_id, block_id, shift_id) + + # compute pooling information + if stage_id < self.stage_num - 1: + voxel_info = self.subm_pooling(voxel_info, stage_id) + + return voxel_info + + @torch.no_grad() + def subm_pooling(self, voxel_info, stage_id): + # x,y,z stride + cur_stage_downsample = self.downsample_stride[stage_id] + # batch_win_coords is from 1 of x, y + batch_win_inds, _, index_in_win, batch_win_coors = get_pooling_index(voxel_info[f'voxel_coors_stage{stage_id}'], self.sparse_shape_list[stage_id], cur_stage_downsample) + # compute pooling mapping index + unique_batch_win_inds, contiguous_batch_win_inds = torch.unique(batch_win_inds, return_inverse=True) + voxel_info[f'pooling_mapping_index_stage{stage_id+1}'] = contiguous_batch_win_inds + + # generate empty placeholder features + placeholder_prepool_feats = voxel_info[f'voxel_feats_stage0'].new_zeros((len(unique_batch_win_inds), + torch.prod(torch.IntTensor(cur_stage_downsample)).item(), self.d_model[stage_id])) + voxel_info[f'pooling_index_in_pool_stage{stage_id+1}'] = index_in_win + voxel_info[f'pooling_preholder_feats_stage{stage_id+1}'] = placeholder_prepool_feats + + # compute pooling coordinates + unique, inverse = unique_batch_win_inds.clone(), contiguous_batch_win_inds.clone() + perm = torch.arange(inverse.size(0), dtype=inverse.dtype, device=inverse.device) + inverse, perm = inverse.flip([0]), perm.flip([0]) + perm = inverse.new_empty(unique.size(0)).scatter_(0, inverse, perm) + pool_coors = batch_win_coors[perm] + + voxel_info[f'voxel_coors_stage{stage_id+1}'] = pool_coors + + return voxel_info + + def get_set(self, voxel_info, stage_id): + ''' + This is one of the core operation of DSVT. + Given voxels' window ids and relative-coords inner window, we partition them into window-bounded and size-equivalent local sets. + To make it clear and easy to follow, we do not use loop to process two shifts. + Args: + voxel_info (dict): + The dict contains the following keys + - batch_win_inds_s{i} (Tensor[float]): Windows indexs of each voxel with shape (N), computed by 'window_partition'. + - coors_in_win_shift{i} (Tensor[int]): Relative-coords inner window of each voxel with shape (N, 3), computed by 'window_partition'. + Each row is (z, y, x). + - ... + + Returns: + See from 'forward' function. + ''' + batch_win_inds_shift0 = voxel_info[f'batch_win_inds_stage{stage_id}_shift0'] + coors_in_win_shift0 = voxel_info[f'coors_in_win_stage{stage_id}_shift0'] + set_voxel_inds_shift0 = self.get_set_single_shift(batch_win_inds_shift0, stage_id, shift_id=0, coors_in_win=coors_in_win_shift0) + voxel_info[f'set_voxel_inds_stage{stage_id}_shift0'] = set_voxel_inds_shift0 + # compute key masks, voxel duplication must happen continuously + prefix_set_voxel_inds_s0 = torch.roll(set_voxel_inds_shift0.clone(), shifts=1, dims=-1) + prefix_set_voxel_inds_s0[ :, :, 0] = -1 + set_voxel_mask_s0 = (set_voxel_inds_shift0 == prefix_set_voxel_inds_s0) + voxel_info[f'set_voxel_mask_stage{stage_id}_shift0'] = set_voxel_mask_s0 + + batch_win_inds_shift1 = voxel_info[f'batch_win_inds_stage{stage_id}_shift1'] + coors_in_win_shift1 = voxel_info[f'coors_in_win_stage{stage_id}_shift1'] + set_voxel_inds_shift1 = self.get_set_single_shift(batch_win_inds_shift1, stage_id, shift_id=1, coors_in_win=coors_in_win_shift1) + voxel_info[f'set_voxel_inds_stage{stage_id}_shift1'] = set_voxel_inds_shift1 + # compute key masks, voxel duplication must happen continuously + prefix_set_voxel_inds_s1 = torch.roll(set_voxel_inds_shift1.clone(), shifts=1, dims=-1) + prefix_set_voxel_inds_s1[ :, :, 0] = -1 + set_voxel_mask_s1 = (set_voxel_inds_shift1 == prefix_set_voxel_inds_s1) + voxel_info[f'set_voxel_mask_stage{stage_id}_shift1'] = set_voxel_mask_s1 + + return voxel_info + + def get_set_single_shift(self, batch_win_inds, stage_id, shift_id=None, coors_in_win=None): + device = batch_win_inds.device + # the number of voxels assigned to a set + voxel_num_set = self.set_info[stage_id][0] + # max number of voxels in a window + max_voxel = self.window_shape[stage_id][shift_id][0] * self.window_shape[stage_id][shift_id][1] * self.window_shape[stage_id][shift_id][2] + # get unique set indexs + contiguous_win_inds = torch.unique(batch_win_inds, return_inverse=True)[1] + voxelnum_per_win = torch.bincount(contiguous_win_inds) + win_num = voxelnum_per_win.shape[0] + setnum_per_win_float = voxelnum_per_win / voxel_num_set + setnum_per_win = torch.ceil(setnum_per_win_float).long() + set_win_inds, set_inds_in_win = get_continous_inds(setnum_per_win) + + # compution of Eq.3 in 'DSVT: Dynamic Sparse Voxel Transformer with Rotated Sets' - https://arxiv.org/abs/2301.06051, + # for each window, we can get voxel indexs belong to different sets. + offset_idx = set_inds_in_win[:,None].repeat(1, voxel_num_set) * voxel_num_set + base_idx = torch.arange(0, voxel_num_set, 1, device=device) + base_select_idx = offset_idx + base_idx + base_select_idx = base_select_idx * voxelnum_per_win[set_win_inds][:,None] + base_select_idx = base_select_idx.double() / (setnum_per_win[set_win_inds] * voxel_num_set)[:,None].double() + base_select_idx = torch.floor(base_select_idx) + # obtain unique indexs in whole space + select_idx = base_select_idx + select_idx = select_idx + set_win_inds.view(-1, 1) * max_voxel + + # this function will return unordered inner window indexs of each voxel + inner_voxel_inds = get_inner_win_inds_cuda(contiguous_win_inds) + global_voxel_inds = contiguous_win_inds * max_voxel + inner_voxel_inds + _, order1 = torch.sort(global_voxel_inds) + + # get y-axis partition results + global_voxel_inds_sorty = contiguous_win_inds * max_voxel + \ + coors_in_win[:,1] * self.window_shape[stage_id][shift_id][0] * self.window_shape[stage_id][shift_id][2] + \ + coors_in_win[:,2] * self.window_shape[stage_id][shift_id][2] + \ + coors_in_win[:,0] + _, order2 = torch.sort(global_voxel_inds_sorty) + inner_voxel_inds_sorty = -torch.ones_like(inner_voxel_inds) + inner_voxel_inds_sorty.scatter_(dim=0, index=order2, src=inner_voxel_inds[order1]) # get y-axis ordered inner window indexs of each voxel + voxel_inds_in_batch_sorty = inner_voxel_inds_sorty + max_voxel * contiguous_win_inds + voxel_inds_padding_sorty = -1 * torch.ones((win_num * max_voxel), dtype=torch.long, device=device) + voxel_inds_padding_sorty[voxel_inds_in_batch_sorty] = torch.arange(0, voxel_inds_in_batch_sorty.shape[0], dtype=torch.long, device=device) + set_voxel_inds_sorty = voxel_inds_padding_sorty[select_idx.long()] + + # get x-axis partition results + global_voxel_inds_sortx = contiguous_win_inds * max_voxel + \ + coors_in_win[:,2] * self.window_shape[stage_id][shift_id][1] * self.window_shape[stage_id][shift_id][2] + \ + coors_in_win[:,1] * self.window_shape[stage_id][shift_id][2] + \ + coors_in_win[:,0] + _, order2 = torch.sort(global_voxel_inds_sortx) + inner_voxel_inds_sortx = -torch.ones_like(inner_voxel_inds) + inner_voxel_inds_sortx.scatter_(dim=0,index=order2, src=inner_voxel_inds[order1]) # get x-axis ordered inner window indexs of each voxel + voxel_inds_in_batch_sortx = inner_voxel_inds_sortx + max_voxel * contiguous_win_inds + voxel_inds_padding_sortx = -1 * torch.ones((win_num * max_voxel), dtype=torch.long, device=device) + voxel_inds_padding_sortx[voxel_inds_in_batch_sortx] = torch.arange(0, voxel_inds_in_batch_sortx.shape[0], dtype=torch.long, device=device) + set_voxel_inds_sortx = voxel_inds_padding_sortx[select_idx.long()] + + all_set_voxel_inds = torch.stack((set_voxel_inds_sorty, set_voxel_inds_sortx), dim=0) + return all_set_voxel_inds + + @torch.no_grad() + def window_partition(self, voxel_info, stage_id): + for i in range(2): + batch_win_inds, coors_in_win = get_window_coors(voxel_info[f'voxel_coors_stage{stage_id}'], + self.sparse_shape_list[stage_id], self.window_shape[stage_id][i], i == 1, self.shift_list[stage_id][i]) + + voxel_info[f'batch_win_inds_stage{stage_id}_shift{i}'] = batch_win_inds + voxel_info[f'coors_in_win_stage{stage_id}_shift{i}'] = coors_in_win + + return voxel_info + + def get_pos_embed(self, coors_in_win, stage_id, block_id, shift_id): + ''' + Args: + coors_in_win: shape=[N, 3], order: z, y, x + ''' + # [N,] + window_shape = self.window_shape[stage_id][shift_id] + + embed_layer = self.posembed_layers[stage_id][block_id][shift_id] + if len(window_shape) == 2: + ndim = 2 + win_x, win_y = window_shape + win_z = 0 + elif window_shape[-1] == 1: + ndim = 2 + win_x, win_y = window_shape[:2] + win_z = 0 + else: + win_x, win_y, win_z = window_shape + ndim = 3 + + assert coors_in_win.size(1) == 3 + z, y, x = coors_in_win[:, 0] - win_z/2, coors_in_win[:, 1] - win_y/2, coors_in_win[:, 2] - win_x/2 + + if self.normalize_pos: + x = x / win_x * 2 * 3.1415 #[-pi, pi] + y = y / win_y * 2 * 3.1415 #[-pi, pi] + z = z / win_z * 2 * 3.1415 #[-pi, pi] + + if ndim==2: + location = torch.stack((x, y), dim=-1) + else: + location = torch.stack((x, y, z), dim=-1) + pos_embed = embed_layer(location) + + return pos_embed +