This commit is contained in:
2025-09-21 20:18:33 +08:00
parent bf622ffe7f
commit 09410d1952

View File

@@ -0,0 +1,283 @@
import copy
import pickle
import os
import numpy as np
from ...ops.roiaware_pool3d import roiaware_pool3d_utils
from ...utils import box_utils, common_utils
from ..dataset import DatasetTemplate
class CustomDataset(DatasetTemplate):
def __init__(self, dataset_cfg, class_names, training=True, root_path=None, logger=None):
"""
Args:
root_path:
dataset_cfg:
class_names:
training:
logger:
"""
super().__init__(
dataset_cfg=dataset_cfg, class_names=class_names, training=training, root_path=root_path, logger=logger
)
self.split = self.dataset_cfg.DATA_SPLIT[self.mode]
split_dir = os.path.join(self.root_path, 'ImageSets', (self.split + '.txt'))
self.sample_id_list = [x.strip() for x in open(split_dir).readlines()] if os.path.exists(split_dir) else None
self.custom_infos = []
self.include_data(self.mode)
self.map_class_to_kitti = self.dataset_cfg.MAP_CLASS_TO_KITTI
def include_data(self, mode):
self.logger.info('Loading Custom dataset.')
custom_infos = []
for info_path in self.dataset_cfg.INFO_PATH[mode]:
info_path = self.root_path / info_path
if not info_path.exists():
continue
with open(info_path, 'rb') as f:
infos = pickle.load(f)
custom_infos.extend(infos)
self.custom_infos.extend(custom_infos)
self.logger.info('Total samples for CUSTOM dataset: %d' % (len(custom_infos)))
def get_label(self, idx):
label_file = self.root_path / 'labels' / ('%s.txt' % idx)
assert label_file.exists()
with open(label_file, 'r') as f:
lines = f.readlines()
# [N, 8]: (x y z dx dy dz heading_angle category_id)
gt_boxes = []
gt_names = []
for line in lines:
line_list = line.strip().split(' ')
gt_boxes.append(line_list[:-1])
gt_names.append(line_list[-1])
return np.array(gt_boxes, dtype=np.float32), np.array(gt_names)
def get_lidar(self, idx):
lidar_file = self.root_path / 'points' / ('%s.npy' % idx)
assert lidar_file.exists()
point_features = np.load(lidar_file)
return point_features
def set_split(self, split):
super().__init__(
dataset_cfg=self.dataset_cfg, class_names=self.class_names, training=self.training,
root_path=self.root_path, logger=self.logger
)
self.split = split
split_dir = self.root_path / 'ImageSets' / (self.split + '.txt')
self.sample_id_list = [x.strip() for x in open(split_dir).readlines()] if split_dir.exists() else None
def __len__(self):
if self._merge_all_iters_to_one_epoch:
return len(self.sample_id_list) * self.total_epochs
return len(self.custom_infos)
def __getitem__(self, index):
if self._merge_all_iters_to_one_epoch:
index = index % len(self.custom_infos)
info = copy.deepcopy(self.custom_infos[index])
sample_idx = info['point_cloud']['lidar_idx']
points = self.get_lidar(sample_idx)
input_dict = {
'frame_id': self.sample_id_list[index],
'points': points
}
if 'annos' in info:
annos = info['annos']
annos = common_utils.drop_info_with_name(annos, name='DontCare')
gt_names = annos['name']
gt_boxes_lidar = annos['gt_boxes_lidar']
input_dict.update({
'gt_names': gt_names,
'gt_boxes': gt_boxes_lidar
})
data_dict = self.prepare_data(data_dict=input_dict)
return data_dict
def evaluation(self, det_annos, class_names, **kwargs):
if 'annos' not in self.custom_infos[0].keys():
return 'No ground-truth boxes for evaluation', {}
def kitti_eval(eval_det_annos, eval_gt_annos, map_name_to_kitti):
from ..kitti.kitti_object_eval_python import eval as kitti_eval
from ..kitti import kitti_utils
kitti_utils.transform_annotations_to_kitti_format(eval_det_annos, map_name_to_kitti=map_name_to_kitti)
kitti_utils.transform_annotations_to_kitti_format(
eval_gt_annos, map_name_to_kitti=map_name_to_kitti,
info_with_fakelidar=self.dataset_cfg.get('INFO_WITH_FAKELIDAR', False)
)
kitti_class_names = [map_name_to_kitti[x] for x in class_names]
ap_result_str, ap_dict = kitti_eval.get_official_eval_result(
gt_annos=eval_gt_annos, dt_annos=eval_det_annos, current_classes=kitti_class_names
)
return ap_result_str, ap_dict
eval_det_annos = copy.deepcopy(det_annos)
eval_gt_annos = [copy.deepcopy(info['annos']) for info in self.custom_infos]
if kwargs['eval_metric'] == 'kitti':
ap_result_str, ap_dict = kitti_eval(eval_det_annos, eval_gt_annos, self.map_class_to_kitti)
else:
raise NotImplementedError
return ap_result_str, ap_dict
def get_infos(self, class_names, num_workers=4, has_label=True, sample_id_list=None, num_features=4):
import concurrent.futures as futures
def process_single_scene(sample_idx):
print('%s sample_idx: %s' % (self.split, sample_idx))
info = {}
pc_info = {'num_features': num_features, 'lidar_idx': sample_idx}
info['point_cloud'] = pc_info
if has_label:
annotations = {}
gt_boxes_lidar, name = self.get_label(sample_idx)
annotations['name'] = name
annotations['gt_boxes_lidar'] = gt_boxes_lidar[:, :7]
info['annos'] = annotations
return info
sample_id_list = sample_id_list if sample_id_list is not None else self.sample_id_list
# create a thread pool to improve the velocity
with futures.ThreadPoolExecutor(num_workers) as executor:
infos = executor.map(process_single_scene, sample_id_list)
return list(infos)
def create_groundtruth_database(self, info_path=None, used_classes=None, split='train'):
import torch
database_save_path = Path(self.root_path) / ('gt_database' if split == 'train' else ('gt_database_%s' % split))
db_info_save_path = Path(self.root_path) / ('custom_dbinfos_%s.pkl' % split)
database_save_path.mkdir(parents=True, exist_ok=True)
all_db_infos = {}
with open(info_path, 'rb') as f:
infos = pickle.load(f)
for k in range(len(infos)):
print('gt_database sample: %d/%d' % (k + 1, len(infos)))
info = infos[k]
sample_idx = info['point_cloud']['lidar_idx']
points = self.get_lidar(sample_idx)
annos = info['annos']
names = annos['name']
gt_boxes = annos['gt_boxes_lidar']
num_obj = gt_boxes.shape[0]
point_indices = roiaware_pool3d_utils.points_in_boxes_cpu(
torch.from_numpy(points[:, 0:3]), torch.from_numpy(gt_boxes)
).numpy() # (nboxes, npoints)
for i in range(num_obj):
filename = '%s_%s_%d.bin' % (sample_idx, names[i], i)
filepath = database_save_path / filename
gt_points = points[point_indices[i] > 0]
gt_points[:, :3] -= gt_boxes[i, :3]
with open(filepath, 'w') as f:
gt_points.tofile(f)
if (used_classes is None) or names[i] in used_classes:
db_path = str(filepath.relative_to(self.root_path)) # gt_database/xxxxx.bin
db_info = {'name': names[i], 'path': db_path, 'gt_idx': i,
'box3d_lidar': gt_boxes[i], 'num_points_in_gt': gt_points.shape[0]}
if names[i] in all_db_infos:
all_db_infos[names[i]].append(db_info)
else:
all_db_infos[names[i]] = [db_info]
# Output the num of all classes in database
for k, v in all_db_infos.items():
print('Database %s: %d' % (k, len(v)))
with open(db_info_save_path, 'wb') as f:
pickle.dump(all_db_infos, f)
@staticmethod
def create_label_file_with_name_and_box(class_names, gt_names, gt_boxes, save_label_path):
with open(save_label_path, 'w') as f:
for idx in range(gt_boxes.shape[0]):
boxes = gt_boxes[idx]
name = gt_names[idx]
if name not in class_names:
continue
line = "{x} {y} {z} {l} {w} {h} {angle} {name}\n".format(
x=boxes[0], y=boxes[1], z=(boxes[2]), l=boxes[3],
w=boxes[4], h=boxes[5], angle=boxes[6], name=name
)
f.write(line)
def create_custom_infos(dataset_cfg, class_names, data_path, save_path, workers=4):
dataset = CustomDataset(
dataset_cfg=dataset_cfg, class_names=class_names, root_path=data_path,
training=False, logger=common_utils.create_logger()
)
train_split, val_split = 'train', 'val'
num_features = len(dataset_cfg.POINT_FEATURE_ENCODING.src_feature_list)
train_filename = save_path / ('custom_infos_%s.pkl' % train_split)
val_filename = save_path / ('custom_infos_%s.pkl' % val_split)
print('------------------------Start to generate data infos------------------------')
dataset.set_split(train_split)
custom_infos_train = dataset.get_infos(
class_names, num_workers=workers, has_label=True, num_features=num_features
)
with open(train_filename, 'wb') as f:
pickle.dump(custom_infos_train, f)
print('Custom info train file is saved to %s' % train_filename)
dataset.set_split(val_split)
custom_infos_val = dataset.get_infos(
class_names, num_workers=workers, has_label=True, num_features=num_features
)
with open(val_filename, 'wb') as f:
pickle.dump(custom_infos_val, f)
print('Custom info train file is saved to %s' % val_filename)
print('------------------------Start create groundtruth database for data augmentation------------------------')
dataset.set_split(train_split)
dataset.create_groundtruth_database(train_filename, split=train_split)
print('------------------------Data preparation done------------------------')
if __name__ == '__main__':
import sys
if sys.argv.__len__() > 1 and sys.argv[1] == 'create_custom_infos':
import yaml
from pathlib import Path
from easydict import EasyDict
dataset_cfg = EasyDict(yaml.safe_load(open(sys.argv[2])))
ROOT_DIR = (Path(__file__).resolve().parent / '../../../').resolve()
create_custom_infos(
dataset_cfg=dataset_cfg,
class_names=['Vehicle', 'Pedestrian', 'Cyclist'],
data_path=ROOT_DIR / 'data' / 'custom',
save_path=ROOT_DIR / 'data' / 'custom',
)