This commit is contained in:
2025-09-21 20:19:22 +08:00
parent 56c4af8759
commit 10fc32242e

View File

@@ -0,0 +1,235 @@
/*
3D IoU Calculation and Rotated NMS(modified from 2D NMS written by others)
Written by Shaoshuai Shi
All Rights Reserved 2019-2020.
*/
#include <torch/serialize/tensor.h>
#include <torch/extension.h>
#include <vector>
#include <cuda.h>
#include <cuda_runtime_api.h>
#include "iou3d_nms.h"
#define CHECK_CUDA(x) do { \
if (!x.type().is_cuda()) { \
fprintf(stderr, "%s must be CUDA tensor at %s:%d\n", #x, __FILE__, __LINE__); \
exit(-1); \
} \
} while (0)
#define CHECK_CONTIGUOUS(x) do { \
if (!x.is_contiguous()) { \
fprintf(stderr, "%s must be contiguous tensor at %s:%d\n", #x, __FILE__, __LINE__); \
exit(-1); \
} \
} while (0)
#define CHECK_INPUT(x) CHECK_CUDA(x);CHECK_CONTIGUOUS(x)
#define DIVUP(m,n) ((m) / (n) + ((m) % (n) > 0))
#define CHECK_ERROR(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
const int THREADS_PER_BLOCK_NMS = sizeof(unsigned long long) * 8;
void boxesalignedoverlapLauncher(const int num_box, const float *boxes_a, const float *boxes_b, float *ans_overlap);
void boxesoverlapLauncher(const int num_a, const float *boxes_a, const int num_b, const float *boxes_b, float *ans_overlap);
void PairedBoxesOverlapLauncher(const int num_a, const float *boxes_a, const int num_b, const float *boxes_b, float *ans_overlap);
void boxesioubevLauncher(const int num_a, const float *boxes_a, const int num_b, const float *boxes_b, float *ans_iou);
void nmsLauncher(const float *boxes, unsigned long long * mask, int boxes_num, float nms_overlap_thresh);
void nmsNormalLauncher(const float *boxes, unsigned long long * mask, int boxes_num, float nms_overlap_thresh);
int boxes_aligned_overlap_bev_gpu(at::Tensor boxes_a, at::Tensor boxes_b, at::Tensor ans_overlap){
// params boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading]
// params boxes_b: (N, 7) [x, y, z, dx, dy, dz, heading]
// params ans_overlap: (N, 1)
CHECK_INPUT(boxes_a);
CHECK_INPUT(boxes_b);
CHECK_INPUT(ans_overlap);
int num_box = boxes_a.size(0);
int num_b = boxes_b.size(0);
assert(num_box == num_b);
const float * boxes_a_data = boxes_a.data<float>();
const float * boxes_b_data = boxes_b.data<float>();
float * ans_overlap_data = ans_overlap.data<float>();
boxesalignedoverlapLauncher(num_box, boxes_a_data, boxes_b_data, ans_overlap_data);
return 1;
}
int boxes_overlap_bev_gpu(at::Tensor boxes_a, at::Tensor boxes_b, at::Tensor ans_overlap){
// params boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading]
// params boxes_b: (M, 7) [x, y, z, dx, dy, dz, heading]
// params ans_overlap: (N, M)
CHECK_INPUT(boxes_a);
CHECK_INPUT(boxes_b);
CHECK_INPUT(ans_overlap);
int num_a = boxes_a.size(0);
int num_b = boxes_b.size(0);
const float * boxes_a_data = boxes_a.data<float>();
const float * boxes_b_data = boxes_b.data<float>();
float * ans_overlap_data = ans_overlap.data<float>();
boxesoverlapLauncher(num_a, boxes_a_data, num_b, boxes_b_data, ans_overlap_data);
return 1;
}
int paired_boxes_overlap_bev_gpu(at::Tensor boxes_a, at::Tensor boxes_b, at::Tensor ans_overlap){
// params boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading]
// params boxes_b: (N, 7) [x, y, z, dx, dy, dz, heading]
// params ans_overlap: (N, 1)
CHECK_INPUT(boxes_a);
CHECK_INPUT(boxes_b);
CHECK_INPUT(ans_overlap);
int num_a = boxes_a.size(0);
int num_b = boxes_b.size(0);
assert(num_a == num_b);
const float * boxes_a_data = boxes_a.data<float>();
const float * boxes_b_data = boxes_b.data<float>();
float * ans_overlap_data = ans_overlap.data<float>();
PairedBoxesOverlapLauncher(num_a, boxes_a_data, num_b, boxes_b_data, ans_overlap_data);
return 1;
}
int boxes_iou_bev_gpu(at::Tensor boxes_a, at::Tensor boxes_b, at::Tensor ans_iou){
// params boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading]
// params boxes_b: (M, 7) [x, y, z, dx, dy, dz, heading]
// params ans_overlap: (N, M)
CHECK_INPUT(boxes_a);
CHECK_INPUT(boxes_b);
CHECK_INPUT(ans_iou);
int num_a = boxes_a.size(0);
int num_b = boxes_b.size(0);
const float * boxes_a_data = boxes_a.data<float>();
const float * boxes_b_data = boxes_b.data<float>();
float * ans_iou_data = ans_iou.data<float>();
boxesioubevLauncher(num_a, boxes_a_data, num_b, boxes_b_data, ans_iou_data);
return 1;
}
int nms_gpu(at::Tensor boxes, at::Tensor keep, float nms_overlap_thresh){
// params boxes: (N, 7) [x, y, z, dx, dy, dz, heading]
// params keep: (N)
CHECK_INPUT(boxes);
CHECK_CONTIGUOUS(keep);
int boxes_num = boxes.size(0);
const float * boxes_data = boxes.data<float>();
long * keep_data = keep.data<long>();
const int col_blocks = DIVUP(boxes_num, THREADS_PER_BLOCK_NMS);
unsigned long long *mask_data = NULL;
CHECK_ERROR(cudaMalloc((void**)&mask_data, boxes_num * col_blocks * sizeof(unsigned long long)));
nmsLauncher(boxes_data, mask_data, boxes_num, nms_overlap_thresh);
// unsigned long long mask_cpu[boxes_num * col_blocks];
// unsigned long long *mask_cpu = new unsigned long long [boxes_num * col_blocks];
std::vector<unsigned long long> mask_cpu(boxes_num * col_blocks);
// printf("boxes_num=%d, col_blocks=%d\n", boxes_num, col_blocks);
CHECK_ERROR(cudaMemcpy(&mask_cpu[0], mask_data, boxes_num * col_blocks * sizeof(unsigned long long),
cudaMemcpyDeviceToHost));
cudaFree(mask_data);
unsigned long long remv_cpu[col_blocks];
memset(remv_cpu, 0, col_blocks * sizeof(unsigned long long));
int num_to_keep = 0;
for (int i = 0; i < boxes_num; i++){
int nblock = i / THREADS_PER_BLOCK_NMS;
int inblock = i % THREADS_PER_BLOCK_NMS;
if (!(remv_cpu[nblock] & (1ULL << inblock))){
keep_data[num_to_keep++] = i;
unsigned long long *p = &mask_cpu[0] + i * col_blocks;
for (int j = nblock; j < col_blocks; j++){
remv_cpu[j] |= p[j];
}
}
}
if ( cudaSuccess != cudaGetLastError() ) printf( "Error!\n" );
return num_to_keep;
}
int nms_normal_gpu(at::Tensor boxes, at::Tensor keep, float nms_overlap_thresh){
// params boxes: (N, 7) [x, y, z, dx, dy, dz, heading]
// params keep: (N)
CHECK_INPUT(boxes);
CHECK_CONTIGUOUS(keep);
int boxes_num = boxes.size(0);
const float * boxes_data = boxes.data<float>();
long * keep_data = keep.data<long>();
const int col_blocks = DIVUP(boxes_num, THREADS_PER_BLOCK_NMS);
unsigned long long *mask_data = NULL;
CHECK_ERROR(cudaMalloc((void**)&mask_data, boxes_num * col_blocks * sizeof(unsigned long long)));
nmsNormalLauncher(boxes_data, mask_data, boxes_num, nms_overlap_thresh);
// unsigned long long mask_cpu[boxes_num * col_blocks];
// unsigned long long *mask_cpu = new unsigned long long [boxes_num * col_blocks];
std::vector<unsigned long long> mask_cpu(boxes_num * col_blocks);
// printf("boxes_num=%d, col_blocks=%d\n", boxes_num, col_blocks);
CHECK_ERROR(cudaMemcpy(&mask_cpu[0], mask_data, boxes_num * col_blocks * sizeof(unsigned long long),
cudaMemcpyDeviceToHost));
cudaFree(mask_data);
unsigned long long remv_cpu[col_blocks];
memset(remv_cpu, 0, col_blocks * sizeof(unsigned long long));
int num_to_keep = 0;
for (int i = 0; i < boxes_num; i++){
int nblock = i / THREADS_PER_BLOCK_NMS;
int inblock = i % THREADS_PER_BLOCK_NMS;
if (!(remv_cpu[nblock] & (1ULL << inblock))){
keep_data[num_to_keep++] = i;
unsigned long long *p = &mask_cpu[0] + i * col_blocks;
for (int j = nblock; j < col_blocks; j++){
remv_cpu[j] |= p[j];
}
}
}
if ( cudaSuccess != cudaGetLastError() ) printf( "Error!\n" );
return num_to_keep;
}