Add File
This commit is contained in:
235
pcdet/ops/iou3d_nms/src/iou3d_nms.cpp
Normal file
235
pcdet/ops/iou3d_nms/src/iou3d_nms.cpp
Normal file
@@ -0,0 +1,235 @@
|
|||||||
|
/*
|
||||||
|
3D IoU Calculation and Rotated NMS(modified from 2D NMS written by others)
|
||||||
|
Written by Shaoshuai Shi
|
||||||
|
All Rights Reserved 2019-2020.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <torch/serialize/tensor.h>
|
||||||
|
#include <torch/extension.h>
|
||||||
|
#include <vector>
|
||||||
|
#include <cuda.h>
|
||||||
|
#include <cuda_runtime_api.h>
|
||||||
|
#include "iou3d_nms.h"
|
||||||
|
|
||||||
|
#define CHECK_CUDA(x) do { \
|
||||||
|
if (!x.type().is_cuda()) { \
|
||||||
|
fprintf(stderr, "%s must be CUDA tensor at %s:%d\n", #x, __FILE__, __LINE__); \
|
||||||
|
exit(-1); \
|
||||||
|
} \
|
||||||
|
} while (0)
|
||||||
|
#define CHECK_CONTIGUOUS(x) do { \
|
||||||
|
if (!x.is_contiguous()) { \
|
||||||
|
fprintf(stderr, "%s must be contiguous tensor at %s:%d\n", #x, __FILE__, __LINE__); \
|
||||||
|
exit(-1); \
|
||||||
|
} \
|
||||||
|
} while (0)
|
||||||
|
#define CHECK_INPUT(x) CHECK_CUDA(x);CHECK_CONTIGUOUS(x)
|
||||||
|
|
||||||
|
#define DIVUP(m,n) ((m) / (n) + ((m) % (n) > 0))
|
||||||
|
|
||||||
|
#define CHECK_ERROR(ans) { gpuAssert((ans), __FILE__, __LINE__); }
|
||||||
|
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true)
|
||||||
|
{
|
||||||
|
if (code != cudaSuccess)
|
||||||
|
{
|
||||||
|
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
|
||||||
|
if (abort) exit(code);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const int THREADS_PER_BLOCK_NMS = sizeof(unsigned long long) * 8;
|
||||||
|
|
||||||
|
void boxesalignedoverlapLauncher(const int num_box, const float *boxes_a, const float *boxes_b, float *ans_overlap);
|
||||||
|
void boxesoverlapLauncher(const int num_a, const float *boxes_a, const int num_b, const float *boxes_b, float *ans_overlap);
|
||||||
|
void PairedBoxesOverlapLauncher(const int num_a, const float *boxes_a, const int num_b, const float *boxes_b, float *ans_overlap);
|
||||||
|
void boxesioubevLauncher(const int num_a, const float *boxes_a, const int num_b, const float *boxes_b, float *ans_iou);
|
||||||
|
void nmsLauncher(const float *boxes, unsigned long long * mask, int boxes_num, float nms_overlap_thresh);
|
||||||
|
void nmsNormalLauncher(const float *boxes, unsigned long long * mask, int boxes_num, float nms_overlap_thresh);
|
||||||
|
|
||||||
|
|
||||||
|
int boxes_aligned_overlap_bev_gpu(at::Tensor boxes_a, at::Tensor boxes_b, at::Tensor ans_overlap){
|
||||||
|
// params boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading]
|
||||||
|
// params boxes_b: (N, 7) [x, y, z, dx, dy, dz, heading]
|
||||||
|
// params ans_overlap: (N, 1)
|
||||||
|
|
||||||
|
CHECK_INPUT(boxes_a);
|
||||||
|
CHECK_INPUT(boxes_b);
|
||||||
|
CHECK_INPUT(ans_overlap);
|
||||||
|
|
||||||
|
int num_box = boxes_a.size(0);
|
||||||
|
int num_b = boxes_b.size(0);
|
||||||
|
|
||||||
|
assert(num_box == num_b);
|
||||||
|
|
||||||
|
const float * boxes_a_data = boxes_a.data<float>();
|
||||||
|
const float * boxes_b_data = boxes_b.data<float>();
|
||||||
|
float * ans_overlap_data = ans_overlap.data<float>();
|
||||||
|
|
||||||
|
boxesalignedoverlapLauncher(num_box, boxes_a_data, boxes_b_data, ans_overlap_data);
|
||||||
|
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
int boxes_overlap_bev_gpu(at::Tensor boxes_a, at::Tensor boxes_b, at::Tensor ans_overlap){
|
||||||
|
// params boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading]
|
||||||
|
// params boxes_b: (M, 7) [x, y, z, dx, dy, dz, heading]
|
||||||
|
// params ans_overlap: (N, M)
|
||||||
|
|
||||||
|
CHECK_INPUT(boxes_a);
|
||||||
|
CHECK_INPUT(boxes_b);
|
||||||
|
CHECK_INPUT(ans_overlap);
|
||||||
|
|
||||||
|
int num_a = boxes_a.size(0);
|
||||||
|
int num_b = boxes_b.size(0);
|
||||||
|
|
||||||
|
const float * boxes_a_data = boxes_a.data<float>();
|
||||||
|
const float * boxes_b_data = boxes_b.data<float>();
|
||||||
|
float * ans_overlap_data = ans_overlap.data<float>();
|
||||||
|
|
||||||
|
boxesoverlapLauncher(num_a, boxes_a_data, num_b, boxes_b_data, ans_overlap_data);
|
||||||
|
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
int paired_boxes_overlap_bev_gpu(at::Tensor boxes_a, at::Tensor boxes_b, at::Tensor ans_overlap){
|
||||||
|
// params boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading]
|
||||||
|
// params boxes_b: (N, 7) [x, y, z, dx, dy, dz, heading]
|
||||||
|
// params ans_overlap: (N, 1)
|
||||||
|
|
||||||
|
CHECK_INPUT(boxes_a);
|
||||||
|
CHECK_INPUT(boxes_b);
|
||||||
|
CHECK_INPUT(ans_overlap);
|
||||||
|
|
||||||
|
int num_a = boxes_a.size(0);
|
||||||
|
int num_b = boxes_b.size(0);
|
||||||
|
|
||||||
|
assert(num_a == num_b);
|
||||||
|
|
||||||
|
const float * boxes_a_data = boxes_a.data<float>();
|
||||||
|
const float * boxes_b_data = boxes_b.data<float>();
|
||||||
|
float * ans_overlap_data = ans_overlap.data<float>();
|
||||||
|
|
||||||
|
PairedBoxesOverlapLauncher(num_a, boxes_a_data, num_b, boxes_b_data, ans_overlap_data);
|
||||||
|
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
int boxes_iou_bev_gpu(at::Tensor boxes_a, at::Tensor boxes_b, at::Tensor ans_iou){
|
||||||
|
// params boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading]
|
||||||
|
// params boxes_b: (M, 7) [x, y, z, dx, dy, dz, heading]
|
||||||
|
// params ans_overlap: (N, M)
|
||||||
|
CHECK_INPUT(boxes_a);
|
||||||
|
CHECK_INPUT(boxes_b);
|
||||||
|
CHECK_INPUT(ans_iou);
|
||||||
|
|
||||||
|
int num_a = boxes_a.size(0);
|
||||||
|
int num_b = boxes_b.size(0);
|
||||||
|
|
||||||
|
const float * boxes_a_data = boxes_a.data<float>();
|
||||||
|
const float * boxes_b_data = boxes_b.data<float>();
|
||||||
|
float * ans_iou_data = ans_iou.data<float>();
|
||||||
|
|
||||||
|
boxesioubevLauncher(num_a, boxes_a_data, num_b, boxes_b_data, ans_iou_data);
|
||||||
|
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
int nms_gpu(at::Tensor boxes, at::Tensor keep, float nms_overlap_thresh){
|
||||||
|
// params boxes: (N, 7) [x, y, z, dx, dy, dz, heading]
|
||||||
|
// params keep: (N)
|
||||||
|
CHECK_INPUT(boxes);
|
||||||
|
CHECK_CONTIGUOUS(keep);
|
||||||
|
|
||||||
|
int boxes_num = boxes.size(0);
|
||||||
|
const float * boxes_data = boxes.data<float>();
|
||||||
|
long * keep_data = keep.data<long>();
|
||||||
|
|
||||||
|
const int col_blocks = DIVUP(boxes_num, THREADS_PER_BLOCK_NMS);
|
||||||
|
|
||||||
|
unsigned long long *mask_data = NULL;
|
||||||
|
CHECK_ERROR(cudaMalloc((void**)&mask_data, boxes_num * col_blocks * sizeof(unsigned long long)));
|
||||||
|
nmsLauncher(boxes_data, mask_data, boxes_num, nms_overlap_thresh);
|
||||||
|
|
||||||
|
// unsigned long long mask_cpu[boxes_num * col_blocks];
|
||||||
|
// unsigned long long *mask_cpu = new unsigned long long [boxes_num * col_blocks];
|
||||||
|
std::vector<unsigned long long> mask_cpu(boxes_num * col_blocks);
|
||||||
|
|
||||||
|
// printf("boxes_num=%d, col_blocks=%d\n", boxes_num, col_blocks);
|
||||||
|
CHECK_ERROR(cudaMemcpy(&mask_cpu[0], mask_data, boxes_num * col_blocks * sizeof(unsigned long long),
|
||||||
|
cudaMemcpyDeviceToHost));
|
||||||
|
|
||||||
|
cudaFree(mask_data);
|
||||||
|
|
||||||
|
unsigned long long remv_cpu[col_blocks];
|
||||||
|
memset(remv_cpu, 0, col_blocks * sizeof(unsigned long long));
|
||||||
|
|
||||||
|
int num_to_keep = 0;
|
||||||
|
|
||||||
|
for (int i = 0; i < boxes_num; i++){
|
||||||
|
int nblock = i / THREADS_PER_BLOCK_NMS;
|
||||||
|
int inblock = i % THREADS_PER_BLOCK_NMS;
|
||||||
|
|
||||||
|
if (!(remv_cpu[nblock] & (1ULL << inblock))){
|
||||||
|
keep_data[num_to_keep++] = i;
|
||||||
|
unsigned long long *p = &mask_cpu[0] + i * col_blocks;
|
||||||
|
for (int j = nblock; j < col_blocks; j++){
|
||||||
|
remv_cpu[j] |= p[j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if ( cudaSuccess != cudaGetLastError() ) printf( "Error!\n" );
|
||||||
|
|
||||||
|
return num_to_keep;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
int nms_normal_gpu(at::Tensor boxes, at::Tensor keep, float nms_overlap_thresh){
|
||||||
|
// params boxes: (N, 7) [x, y, z, dx, dy, dz, heading]
|
||||||
|
// params keep: (N)
|
||||||
|
|
||||||
|
CHECK_INPUT(boxes);
|
||||||
|
CHECK_CONTIGUOUS(keep);
|
||||||
|
|
||||||
|
int boxes_num = boxes.size(0);
|
||||||
|
const float * boxes_data = boxes.data<float>();
|
||||||
|
long * keep_data = keep.data<long>();
|
||||||
|
|
||||||
|
const int col_blocks = DIVUP(boxes_num, THREADS_PER_BLOCK_NMS);
|
||||||
|
|
||||||
|
unsigned long long *mask_data = NULL;
|
||||||
|
CHECK_ERROR(cudaMalloc((void**)&mask_data, boxes_num * col_blocks * sizeof(unsigned long long)));
|
||||||
|
nmsNormalLauncher(boxes_data, mask_data, boxes_num, nms_overlap_thresh);
|
||||||
|
|
||||||
|
// unsigned long long mask_cpu[boxes_num * col_blocks];
|
||||||
|
// unsigned long long *mask_cpu = new unsigned long long [boxes_num * col_blocks];
|
||||||
|
std::vector<unsigned long long> mask_cpu(boxes_num * col_blocks);
|
||||||
|
|
||||||
|
// printf("boxes_num=%d, col_blocks=%d\n", boxes_num, col_blocks);
|
||||||
|
CHECK_ERROR(cudaMemcpy(&mask_cpu[0], mask_data, boxes_num * col_blocks * sizeof(unsigned long long),
|
||||||
|
cudaMemcpyDeviceToHost));
|
||||||
|
|
||||||
|
cudaFree(mask_data);
|
||||||
|
|
||||||
|
unsigned long long remv_cpu[col_blocks];
|
||||||
|
memset(remv_cpu, 0, col_blocks * sizeof(unsigned long long));
|
||||||
|
|
||||||
|
int num_to_keep = 0;
|
||||||
|
|
||||||
|
for (int i = 0; i < boxes_num; i++){
|
||||||
|
int nblock = i / THREADS_PER_BLOCK_NMS;
|
||||||
|
int inblock = i % THREADS_PER_BLOCK_NMS;
|
||||||
|
|
||||||
|
if (!(remv_cpu[nblock] & (1ULL << inblock))){
|
||||||
|
keep_data[num_to_keep++] = i;
|
||||||
|
unsigned long long *p = &mask_cpu[0] + i * col_blocks;
|
||||||
|
for (int j = nblock; j < col_blocks; j++){
|
||||||
|
remv_cpu[j] |= p[j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if ( cudaSuccess != cudaGetLastError() ) printf( "Error!\n" );
|
||||||
|
|
||||||
|
return num_to_keep;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
Reference in New Issue
Block a user