Add File
This commit is contained in:
179
pcdet/models/roi_heads/pointrcnn_head.py
Normal file
179
pcdet/models/roi_heads/pointrcnn_head.py
Normal file
@@ -0,0 +1,179 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from ...ops.pointnet2.pointnet2_batch import pointnet2_modules
|
||||
from ...ops.roipoint_pool3d import roipoint_pool3d_utils
|
||||
from ...utils import common_utils
|
||||
from .roi_head_template import RoIHeadTemplate
|
||||
|
||||
|
||||
class PointRCNNHead(RoIHeadTemplate):
|
||||
def __init__(self, input_channels, model_cfg, num_class=1, **kwargs):
|
||||
super().__init__(num_class=num_class, model_cfg=model_cfg)
|
||||
self.model_cfg = model_cfg
|
||||
use_bn = self.model_cfg.USE_BN
|
||||
self.SA_modules = nn.ModuleList()
|
||||
channel_in = input_channels
|
||||
|
||||
self.num_prefix_channels = 3 + 2 # xyz + point_scores + point_depth
|
||||
xyz_mlps = [self.num_prefix_channels] + self.model_cfg.XYZ_UP_LAYER
|
||||
shared_mlps = []
|
||||
for k in range(len(xyz_mlps) - 1):
|
||||
shared_mlps.append(nn.Conv2d(xyz_mlps[k], xyz_mlps[k + 1], kernel_size=1, bias=not use_bn))
|
||||
if use_bn:
|
||||
shared_mlps.append(nn.BatchNorm2d(xyz_mlps[k + 1]))
|
||||
shared_mlps.append(nn.ReLU())
|
||||
self.xyz_up_layer = nn.Sequential(*shared_mlps)
|
||||
|
||||
c_out = self.model_cfg.XYZ_UP_LAYER[-1]
|
||||
self.merge_down_layer = nn.Sequential(
|
||||
nn.Conv2d(c_out * 2, c_out, kernel_size=1, bias=not use_bn),
|
||||
*[nn.BatchNorm2d(c_out), nn.ReLU()] if use_bn else [nn.ReLU()]
|
||||
)
|
||||
|
||||
for k in range(self.model_cfg.SA_CONFIG.NPOINTS.__len__()):
|
||||
mlps = [channel_in] + self.model_cfg.SA_CONFIG.MLPS[k]
|
||||
|
||||
npoint = self.model_cfg.SA_CONFIG.NPOINTS[k] if self.model_cfg.SA_CONFIG.NPOINTS[k] != -1 else None
|
||||
self.SA_modules.append(
|
||||
pointnet2_modules.PointnetSAModule(
|
||||
npoint=npoint,
|
||||
radius=self.model_cfg.SA_CONFIG.RADIUS[k],
|
||||
nsample=self.model_cfg.SA_CONFIG.NSAMPLE[k],
|
||||
mlp=mlps,
|
||||
use_xyz=True,
|
||||
bn=use_bn
|
||||
)
|
||||
)
|
||||
channel_in = mlps[-1]
|
||||
|
||||
self.cls_layers = self.make_fc_layers(
|
||||
input_channels=channel_in, output_channels=self.num_class, fc_list=self.model_cfg.CLS_FC
|
||||
)
|
||||
self.reg_layers = self.make_fc_layers(
|
||||
input_channels=channel_in,
|
||||
output_channels=self.box_coder.code_size * self.num_class,
|
||||
fc_list=self.model_cfg.REG_FC
|
||||
)
|
||||
|
||||
self.roipoint_pool3d_layer = roipoint_pool3d_utils.RoIPointPool3d(
|
||||
num_sampled_points=self.model_cfg.ROI_POINT_POOL.NUM_SAMPLED_POINTS,
|
||||
pool_extra_width=self.model_cfg.ROI_POINT_POOL.POOL_EXTRA_WIDTH
|
||||
)
|
||||
self.init_weights(weight_init='xavier')
|
||||
|
||||
def init_weights(self, weight_init='xavier'):
|
||||
if weight_init == 'kaiming':
|
||||
init_func = nn.init.kaiming_normal_
|
||||
elif weight_init == 'xavier':
|
||||
init_func = nn.init.xavier_normal_
|
||||
elif weight_init == 'normal':
|
||||
init_func = nn.init.normal_
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Conv1d):
|
||||
if weight_init == 'normal':
|
||||
init_func(m.weight, mean=0, std=0.001)
|
||||
else:
|
||||
init_func(m.weight)
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
nn.init.normal_(self.reg_layers[-1].weight, mean=0, std=0.001)
|
||||
|
||||
def roipool3d_gpu(self, batch_dict):
|
||||
"""
|
||||
Args:
|
||||
batch_dict:
|
||||
batch_size:
|
||||
rois: (B, num_rois, 7 + C)
|
||||
point_coords: (num_points, 4) [bs_idx, x, y, z]
|
||||
point_features: (num_points, C)
|
||||
point_cls_scores: (N1 + N2 + N3 + ..., 1)
|
||||
point_part_offset: (N1 + N2 + N3 + ..., 3)
|
||||
Returns:
|
||||
|
||||
"""
|
||||
batch_size = batch_dict['batch_size']
|
||||
batch_idx = batch_dict['point_coords'][:, 0]
|
||||
point_coords = batch_dict['point_coords'][:, 1:4]
|
||||
point_features = batch_dict['point_features']
|
||||
rois = batch_dict['rois'] # (B, num_rois, 7 + C)
|
||||
batch_cnt = point_coords.new_zeros(batch_size).int()
|
||||
for bs_idx in range(batch_size):
|
||||
batch_cnt[bs_idx] = (batch_idx == bs_idx).sum()
|
||||
|
||||
assert batch_cnt.min() == batch_cnt.max()
|
||||
|
||||
point_scores = batch_dict['point_cls_scores'].detach()
|
||||
point_depths = point_coords.norm(dim=1) / self.model_cfg.ROI_POINT_POOL.DEPTH_NORMALIZER - 0.5
|
||||
point_features_list = [point_scores[:, None], point_depths[:, None], point_features]
|
||||
point_features_all = torch.cat(point_features_list, dim=1)
|
||||
batch_points = point_coords.view(batch_size, -1, 3)
|
||||
batch_point_features = point_features_all.view(batch_size, -1, point_features_all.shape[-1])
|
||||
|
||||
with torch.no_grad():
|
||||
pooled_features, pooled_empty_flag = self.roipoint_pool3d_layer(
|
||||
batch_points, batch_point_features, rois
|
||||
) # pooled_features: (B, num_rois, num_sampled_points, 3 + C), pooled_empty_flag: (B, num_rois)
|
||||
|
||||
# canonical transformation
|
||||
roi_center = rois[:, :, 0:3]
|
||||
pooled_features[:, :, :, 0:3] -= roi_center.unsqueeze(dim=2)
|
||||
|
||||
pooled_features = pooled_features.view(-1, pooled_features.shape[-2], pooled_features.shape[-1])
|
||||
pooled_features[:, :, 0:3] = common_utils.rotate_points_along_z(
|
||||
pooled_features[:, :, 0:3], -rois.view(-1, rois.shape[-1])[:, 6]
|
||||
)
|
||||
pooled_features[pooled_empty_flag.view(-1) > 0] = 0
|
||||
return pooled_features
|
||||
|
||||
def forward(self, batch_dict):
|
||||
"""
|
||||
Args:
|
||||
batch_dict:
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
targets_dict = self.proposal_layer(
|
||||
batch_dict, nms_config=self.model_cfg.NMS_CONFIG['TRAIN' if self.training else 'TEST']
|
||||
)
|
||||
if self.training:
|
||||
targets_dict = self.assign_targets(batch_dict)
|
||||
batch_dict['rois'] = targets_dict['rois']
|
||||
batch_dict['roi_labels'] = targets_dict['roi_labels']
|
||||
|
||||
pooled_features = self.roipool3d_gpu(batch_dict) # (total_rois, num_sampled_points, 3 + C)
|
||||
|
||||
xyz_input = pooled_features[..., 0:self.num_prefix_channels].transpose(1, 2).unsqueeze(dim=3).contiguous()
|
||||
xyz_features = self.xyz_up_layer(xyz_input)
|
||||
point_features = pooled_features[..., self.num_prefix_channels:].transpose(1, 2).unsqueeze(dim=3)
|
||||
merged_features = torch.cat((xyz_features, point_features), dim=1)
|
||||
merged_features = self.merge_down_layer(merged_features)
|
||||
|
||||
l_xyz, l_features = [pooled_features[..., 0:3].contiguous()], [merged_features.squeeze(dim=3).contiguous()]
|
||||
|
||||
for i in range(len(self.SA_modules)):
|
||||
li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i])
|
||||
l_xyz.append(li_xyz)
|
||||
l_features.append(li_features)
|
||||
|
||||
shared_features = l_features[-1] # (total_rois, num_features, 1)
|
||||
rcnn_cls = self.cls_layers(shared_features).transpose(1, 2).contiguous().squeeze(dim=1) # (B, 1 or 2)
|
||||
rcnn_reg = self.reg_layers(shared_features).transpose(1, 2).contiguous().squeeze(dim=1) # (B, C)
|
||||
|
||||
if not self.training:
|
||||
batch_cls_preds, batch_box_preds = self.generate_predicted_boxes(
|
||||
batch_size=batch_dict['batch_size'], rois=batch_dict['rois'], cls_preds=rcnn_cls, box_preds=rcnn_reg
|
||||
)
|
||||
batch_dict['batch_cls_preds'] = batch_cls_preds
|
||||
batch_dict['batch_box_preds'] = batch_box_preds
|
||||
batch_dict['cls_preds_normalized'] = False
|
||||
else:
|
||||
targets_dict['rcnn_cls'] = rcnn_cls
|
||||
targets_dict['rcnn_reg'] = rcnn_reg
|
||||
|
||||
self.forward_ret_dict = targets_dict
|
||||
return batch_dict
|
||||
Reference in New Issue
Block a user