diff --git a/pcdet/models/backbones_image/swin.py b/pcdet/models/backbones_image/swin.py new file mode 100644 index 0000000..d428c27 --- /dev/null +++ b/pcdet/models/backbones_image/swin.py @@ -0,0 +1,736 @@ +# Copyright (c) OpenMMLab. All rights reserved. +""" +Mostly copy-paste from + https://github.com/open-mmlab/mmdetection/blob/main/mmdet/models/backbones/swin.py + +""" + +import warnings +from collections import OrderedDict +from copy import deepcopy + +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint as cp + +from ..model_utils.swin_utils import swin_converter +from ..model_utils.swin_utils import PatchEmbed, PatchMerging +from ..model_utils.swin_utils import FFN, DropPath, to_2tuple, trunc_normal_, trunc_normal_init, constant_init + + +class WindowMSA(nn.Module): + """Window based multi-head self-attention (W-MSA) module with relative + position bias. + + Args: + embed_dims (int): Number of input channels. + num_heads (int): Number of attention heads. + window_size (tuple[int]): The height and width of the window. + qkv_bias (bool, optional): If True, add a learnable bias to q, k, v. + Default: True. + qk_scale (float | None, optional): Override default qk scale of + head_dim ** -0.5 if set. Default: None. + attn_drop_rate (float, optional): Dropout ratio of attention weight. + Default: 0.0 + proj_drop_rate (float, optional): Dropout ratio of output. Default: 0. + """ + + def __init__(self, + embed_dims, + num_heads, + window_size, + qkv_bias=True, + qk_scale=None, + attn_drop_rate=0., + proj_drop_rate=0.): + + super().__init__() + self._is_init = False + + self.embed_dims = embed_dims + self.window_size = window_size # Wh, Ww + self.num_heads = num_heads + head_embed_dims = embed_dims // num_heads + self.scale = qk_scale or head_embed_dims**-0.5 + + # define a parameter table of relative position bias + self.relative_position_bias_table = nn.Parameter( + torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), + num_heads)) # 2*Wh-1 * 2*Ww-1, nH + + # About 2x faster than original impl + Wh, Ww = self.window_size + rel_index_coords = self.double_step_seq(2 * Ww - 1, Wh, 1, Ww) + rel_position_index = rel_index_coords + rel_index_coords.T + rel_position_index = rel_position_index.flip(1).contiguous() + self.register_buffer('relative_position_index', rel_position_index) + + self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop_rate) + self.proj = nn.Linear(embed_dims, embed_dims) + self.proj_drop = nn.Dropout(proj_drop_rate) + + self.softmax = nn.Softmax(dim=-1) + + def init_weights(self): + trunc_normal_(self.relative_position_bias_table, std=0.02) + + def forward(self, x, mask=None): + """ + Args: + + x (tensor): input features with shape of (num_windows*B, N, C) + mask (tensor | None, Optional): mask with shape of (num_windows, + Wh*Ww, Wh*Ww), value should be between (-inf, 0]. + """ + B, N, C = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, + C // self.num_heads).permute(2, 0, 3, 1, 4) + # make torchscript happy (cannot use tensor as tuple) + q, k, v = qkv[0], qkv[1], qkv[2] + + q = q * self.scale + attn = (q @ k.transpose(-2, -1)) + + relative_position_bias = self.relative_position_bias_table[ + self.relative_position_index.view(-1)].view( + self.window_size[0] * self.window_size[1], + self.window_size[0] * self.window_size[1], + -1) # Wh*Ww,Wh*Ww,nH + relative_position_bias = relative_position_bias.permute( + 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww + attn = attn + relative_position_bias.unsqueeze(0) + + if mask is not None: + nW = mask.shape[0] + attn = attn.view(B // nW, nW, self.num_heads, N, + N) + mask.unsqueeze(1).unsqueeze(0) + attn = attn.view(-1, self.num_heads, N, N) + attn = self.softmax(attn) + + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + @staticmethod + def double_step_seq(step1, len1, step2, len2): + seq1 = torch.arange(0, step1 * len1, step1) + seq2 = torch.arange(0, step2 * len2, step2) + return (seq1[:, None] + seq2[None, :]).reshape(1, -1) + + +class ShiftWindowMSA(nn.Module): + """Shifted Window Multihead Self-Attention Module. + + Args: + embed_dims (int): Number of input channels. + num_heads (int): Number of attention heads. + window_size (int): The height and width of the window. + shift_size (int, optional): The shift step of each window towards + right-bottom. If zero, act as regular window-msa. Defaults to 0. + qkv_bias (bool, optional): If True, add a learnable bias to q, k, v. + Default: True + qk_scale (float | None, optional): Override default qk scale of + head_dim ** -0.5 if set. Defaults: None. + attn_drop_rate (float, optional): Dropout ratio of attention weight. + Defaults: 0. + proj_drop_rate (float, optional): Dropout ratio of output. + Defaults: 0. + dropout_layer (dict, optional): The dropout_layer used before output. + Defaults: dict(type='DropPath', drop_prob=0.). + """ + + def __init__(self, + embed_dims, + num_heads, + window_size, + shift_size=0, + qkv_bias=True, + qk_scale=None, + attn_drop_rate=0, + proj_drop_rate=0, + dropout_layer=dict(type='DropPath', drop_prob=0.)): + super().__init__() + self._is_init = False + + self.window_size = window_size + self.shift_size = shift_size + assert 0 <= self.shift_size < self.window_size + + self.w_msa = WindowMSA( + embed_dims=embed_dims, + num_heads=num_heads, + window_size=to_2tuple(window_size), + qkv_bias=qkv_bias, + qk_scale=qk_scale, + attn_drop_rate=attn_drop_rate, + proj_drop_rate=proj_drop_rate,) + self.drop = DropPath(dropout_layer['drop_prob']) + + def forward(self, query, hw_shape): + B, L, C = query.shape + H, W = hw_shape + assert L == H * W, 'input feature has wrong size' + query = query.view(B, H, W, C) + + # pad feature maps to multiples of window size + pad_r = (self.window_size - W % self.window_size) % self.window_size + pad_b = (self.window_size - H % self.window_size) % self.window_size + query = F.pad(query, (0, 0, 0, pad_r, 0, pad_b)) + H_pad, W_pad = query.shape[1], query.shape[2] + + # cyclic shift + if self.shift_size > 0: + shifted_query = torch.roll( + query, + shifts=(-self.shift_size, -self.shift_size), + dims=(1, 2)) + + # calculate attention mask for SW-MSA + img_mask = torch.zeros((1, H_pad, W_pad, 1), device=query.device) + h_slices = (slice(0, -self.window_size), + slice(-self.window_size, + -self.shift_size), slice(-self.shift_size, None)) + w_slices = (slice(0, -self.window_size), + slice(-self.window_size, + -self.shift_size), slice(-self.shift_size, None)) + cnt = 0 + for h in h_slices: + for w in w_slices: + img_mask[:, h, w, :] = cnt + cnt += 1 + + # nW, window_size, window_size, 1 + mask_windows = self.window_partition(img_mask) + mask_windows = mask_windows.view( + -1, self.window_size * self.window_size) + attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) + attn_mask = attn_mask.masked_fill(attn_mask != 0, + float(-100.0)).masked_fill( + attn_mask == 0, float(0.0)) + else: + shifted_query = query + attn_mask = None + + # nW*B, window_size, window_size, C + query_windows = self.window_partition(shifted_query) + # nW*B, window_size*window_size, C + query_windows = query_windows.view(-1, self.window_size**2, C) + + # W-MSA/SW-MSA (nW*B, window_size*window_size, C) + attn_windows = self.w_msa(query_windows, mask=attn_mask) + + # merge windows + attn_windows = attn_windows.view(-1, self.window_size, + self.window_size, C) + + # B H' W' C + shifted_x = self.window_reverse(attn_windows, H_pad, W_pad) + # reverse cyclic shift + if self.shift_size > 0: + x = torch.roll( + shifted_x, + shifts=(self.shift_size, self.shift_size), + dims=(1, 2)) + else: + x = shifted_x + + if pad_r > 0 or pad_b: + x = x[:, :H, :W, :].contiguous() + + x = x.view(B, H * W, C) + + x = self.drop(x) + return x + + def window_reverse(self, windows, H, W): + """ + Args: + windows: (num_windows*B, window_size, window_size, C) + H (int): Height of image + W (int): Width of image + Returns: + x: (B, H, W, C) + """ + window_size = self.window_size + B = int(windows.shape[0] / (H * W / window_size / window_size)) + x = windows.view(B, H // window_size, W // window_size, window_size, + window_size, -1) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) + return x + + def window_partition(self, x): + """ + Args: + x: (B, H, W, C) + Returns: + windows: (num_windows*B, window_size, window_size, C) + """ + B, H, W, C = x.shape + window_size = self.window_size + x = x.view(B, H // window_size, window_size, W // window_size, + window_size, C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous() + windows = windows.view(-1, window_size, window_size, C) + return windows + + +class SwinBlock(nn.Module): + """" + Args: + embed_dims (int): The feature dimension. + num_heads (int): Parallel attention heads. + feedforward_channels (int): The hidden dimension for FFNs. + window_size (int, optional): The local window scale. Default: 7. + shift (bool, optional): whether to shift window or not. Default False. + qkv_bias (bool, optional): enable bias for qkv if True. Default: True. + qk_scale (float | None, optional): Override default qk scale of + head_dim ** -0.5 if set. Default: None. + drop_rate (float, optional): Dropout rate. Default: 0. + attn_drop_rate (float, optional): Attention dropout rate. Default: 0. + drop_path_rate (float, optional): Stochastic depth rate. Default: 0. + act_cfg (dict, optional): The config dict of activation function. + Default: dict(type='GELU'). + norm_cfg (dict, optional): The config dict of normalization. + Default: dict(type='LN'). + with_cp (bool, optional): Use checkpoint or not. Using checkpoint + will save some memory while slowing down the training speed. + Default: False. + """ + + def __init__(self, + embed_dims, + num_heads, + feedforward_channels, + window_size=7, + shift=False, + qkv_bias=True, + qk_scale=None, + drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0., + act_cfg=dict(type='GELU'), + norm_cfg=dict(type='LN'), + with_cp=False,): + super(SwinBlock, self).__init__() + self._is_init = False + + self.with_cp = with_cp + + self.norm1 = nn.LayerNorm(embed_dims) + self.attn = ShiftWindowMSA( + embed_dims=embed_dims, + num_heads=num_heads, + window_size=window_size, + shift_size=window_size // 2 if shift else 0, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + attn_drop_rate=attn_drop_rate, + proj_drop_rate=drop_rate, + dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),) + + self.norm2 = nn.LayerNorm(embed_dims) + self.ffn = FFN( + embed_dims=embed_dims, + feedforward_channels=feedforward_channels, + num_fcs=2, + ffn_drop=drop_rate, + dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), + act_cfg=act_cfg, + add_identity=True,) + + def forward(self, x, hw_shape): + + def _inner_forward(x): + identity = x + x = self.norm1(x) + x = self.attn(x, hw_shape) + + x = x + identity + + identity = x + x = self.norm2(x) + x = self.ffn(x, identity=identity) + + return x + + if self.with_cp and x.requires_grad: + x = cp.checkpoint(_inner_forward, x) + else: + x = _inner_forward(x) + + return x + + +class SwinBlockSequence(nn.Module): + """Implements one stage in Swin Transformer. + + Args: + embed_dims (int): The feature dimension. + num_heads (int): Parallel attention heads. + feedforward_channels (int): The hidden dimension for FFNs. + depth (int): The number of blocks in this stage. + window_size (int, optional): The local window scale. Default: 7. + qkv_bias (bool, optional): enable bias for qkv if True. Default: True. + qk_scale (float | None, optional): Override default qk scale of + head_dim ** -0.5 if set. Default: None. + drop_rate (float, optional): Dropout rate. Default: 0. + attn_drop_rate (float, optional): Attention dropout rate. Default: 0. + drop_path_rate (float | list[float], optional): Stochastic depth + rate. Default: 0. + downsample (BaseModule | None, optional): The downsample operation + module. Default: None. + act_cfg (dict, optional): The config dict of activation function. + Default: dict(type='GELU'). + norm_cfg (dict, optional): The config dict of normalization. + Default: dict(type='LN'). + with_cp (bool, optional): Use checkpoint or not. Using checkpoint + will save some memory while slowing down the training speed. + Default: False. + """ + + def __init__(self, + embed_dims, + num_heads, + feedforward_channels, + depth, + window_size=7, + qkv_bias=True, + qk_scale=None, + drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0., + downsample=None, + act_cfg=dict(type='GELU'), + norm_cfg=dict(type='LN'), + with_cp=False): + super().__init__() + self._is_init = False + + if isinstance(drop_path_rate, list): + drop_path_rates = drop_path_rate + assert len(drop_path_rates) == depth + else: + drop_path_rates = [deepcopy(drop_path_rate) for _ in range(depth)] + + self.blocks = nn.ModuleList() + for i in range(depth): + block = SwinBlock( + embed_dims=embed_dims, + num_heads=num_heads, + feedforward_channels=feedforward_channels, + window_size=window_size, + shift=False if i % 2 == 0 else True, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + drop_rate=drop_rate, + attn_drop_rate=attn_drop_rate, + drop_path_rate=drop_path_rates[i], + act_cfg=act_cfg, + norm_cfg=norm_cfg, + with_cp=with_cp,) + self.blocks.append(block) + + self.downsample = downsample + + def forward(self, x, hw_shape): + for block in self.blocks: + x = block(x, hw_shape) + + if self.downsample: + x_down, down_hw_shape = self.downsample(x, hw_shape) + return x_down, down_hw_shape, x, hw_shape + else: + return x, hw_shape, x, hw_shape + + +class SwinTransformer(nn.Module): + """ Swin Transformer + A PyTorch implement of : `Swin Transformer: + Hierarchical Vision Transformer using Shifted Windows` - + https://arxiv.org/abs/2103.14030 + + This code is adapted from https://github.com/open-mmlab/mmdetection/blob/main/mmdet/models/backbones/swin.py + with minimal modifications. + + Args: + pretrain_img_size (int | tuple[int]): The size of input image when + pretrain. Defaults: 224. + in_channels (int): The num of input channels. + Defaults: 3. + embed_dims (int): The feature dimension. Default: 96. + patch_size (int | tuple[int]): Patch size. Default: 4. + window_size (int): Window size. Default: 7. + mlp_ratio (int): Ratio of mlp hidden dim to embedding dim. + Default: 4. + depths (tuple[int]): Depths of each Swin Transformer stage. + Default: (2, 2, 6, 2). + num_heads (tuple[int]): Parallel attention heads of each Swin + Transformer stage. Default: (3, 6, 12, 24). + strides (tuple[int]): The patch merging or patch embedding stride of + each Swin Transformer stage. (In swin, we set kernel size equal to + stride.) Default: (4, 2, 2, 2). + out_indices (tuple[int]): Output from which stages. + Default: (0, 1, 2, 3). + qkv_bias (bool, optional): If True, add a learnable bias to query, key, + value. Default: True + qk_scale (float | None, optional): Override default qk scale of + head_dim ** -0.5 if set. Default: None. + patch_norm (bool): If add a norm layer for patch embed and patch + merging. Default: True. + drop_rate (float): Dropout rate. Defaults: 0. + attn_drop_rate (float): Attention dropout rate. Default: 0. + drop_path_rate (float): Stochastic depth rate. Defaults: 0.1. + use_abs_pos_embed (bool): If True, add absolute position embedding to + the patch embedding. Defaults: False. + act_cfg (dict): Config dict for activation layer. + Default: dict(type='GELU'). + norm_cfg (dict): Config dict for normalization layer at + output of backone. Defaults: dict(type='LN'). + with_cp (bool, optional): Use checkpoint or not. Using checkpoint + will save some memory while slowing down the training speed. + Default: False. + pretrained (str, optional): model pretrained path. Default: None. + convert_weights (bool): The flag indicates whether the + pre-trained model is from the original repo. We may need + to convert some keys to make it compatible. + Default: False. + frozen_stages (int): Stages to be frozen (stop grad and set eval mode). + Default: -1 (-1 means not freezing any parameters). + init_cfg (dict, optional): The Config for initialization. + Defaults to None. + """ + + def __init__(self, model_cfg): + + self.model_cfg = model_cfg + pretrain_img_size = self.model_cfg.get('PRETRAIN_IMG_SIZE', 224) + init_cfg = self.model_cfg.get('INIT_CFG', None) + depths = self.model_cfg.DEPTHS + in_channels = self.model_cfg.get('IN_CHANNELS', 3) + strides = self.model_cfg.get('STRIDES', (4, 2, 2, 2)) + patch_size = self.model_cfg.get('PATCH_SIZE', 4) + embed_dims = self.model_cfg.EMBED_DIMS + num_heads = self.model_cfg.NUM_HEADS + window_size = self.model_cfg.WINDOW_SIZE + mlp_ratio = self.model_cfg.MLP_RATIO + qkv_bias = self.model_cfg.get('QKV_BIAS', True) + qk_scale = self.model_cfg.get('QK_SCALE', None) + drop_rate = self.model_cfg.DROP_RATE + attn_drop_rate = self.model_cfg.ATTN_DROP_RATE + drop_path_rate = self.model_cfg.DROP_PATH_RATE + patch_norm = self.model_cfg.get('PATCH_NORM', True) + out_indices = self.model_cfg.get('OUT_INDICES', [0, 1, 2, 3]) + with_cp = self.model_cfg.get('WITH_CP', False) + use_abs_pos_embed = self.model_cfg.get('USE_ABS_POS_EMBED', False) + act_cfg=dict(type='GELU') + norm_cfg=dict(type='LN') + + self.convert_weights = self.model_cfg.get('CONVERT_WEIGHTS', False) + self.frozen_stages = self.model_cfg.get('FROZEN_STAGES', -1) + + if isinstance(pretrain_img_size, int): + pretrain_img_size = to_2tuple(pretrain_img_size) + elif isinstance(pretrain_img_size, tuple): + if len(pretrain_img_size) == 1: + pretrain_img_size = to_2tuple(pretrain_img_size[0]) + assert len(pretrain_img_size) == 2, \ + f'The size of image should have length 1 or 2, ' \ + f'but got {len(pretrain_img_size)}' + + super(SwinTransformer, self).__init__() + self.init_cfg = init_cfg + + num_layers = len(depths) + self.out_indices = out_indices + self.use_abs_pos_embed = use_abs_pos_embed + + assert strides[0] == patch_size, 'Use non-overlapping patch embed.' + + self.patch_embed = PatchEmbed( + in_channels=in_channels, + embed_dims=embed_dims, + conv_type='Conv2d', + kernel_size=patch_size, + stride=strides[0], + norm_cfg=norm_cfg if patch_norm else None) + + if self.use_abs_pos_embed: + patch_row = pretrain_img_size[0] // patch_size + patch_col = pretrain_img_size[1] // patch_size + num_patches = patch_row * patch_col + self.absolute_pos_embed = nn.Parameter( + torch.zeros((1, num_patches, embed_dims))) + + self.drop_after_pos = nn.Dropout(p=drop_rate) + + # set stochastic depth decay rule + total_depth = sum(depths) + dpr = [ + x.item() for x in torch.linspace(0, drop_path_rate, total_depth) + ] + + self.stages = nn.ModuleList() + in_channels = embed_dims + for i in range(num_layers): + if i < num_layers - 1: + downsample = PatchMerging( + in_channels=in_channels, + out_channels=2 * in_channels, + stride=strides[i + 1], + norm_cfg=norm_cfg if patch_norm else None) + else: + downsample = None + + stage = SwinBlockSequence( + embed_dims=in_channels, + num_heads=num_heads[i], + feedforward_channels=mlp_ratio * in_channels, + depth=depths[i], + window_size=window_size, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + drop_rate=drop_rate, + attn_drop_rate=attn_drop_rate, + drop_path_rate=dpr[sum(depths[:i]):sum(depths[:i + 1])], + downsample=downsample, + act_cfg=act_cfg, + norm_cfg=norm_cfg, + with_cp=with_cp) + self.stages.append(stage) + if downsample: + in_channels = downsample.out_channels + + self.num_features = [int(embed_dims * 2**i) for i in range(num_layers)] + # Add a norm layer for each output + for i in out_indices: + layer = nn.LayerNorm(self.num_features[i]) + layer_name = f'norm{i}' + self.add_module(layer_name, layer) + + def train(self, mode=True): + """Convert the model into training mode while keep layers freezed.""" + super(SwinTransformer, self).train(mode) + self._freeze_stages() + + def _freeze_stages(self): + if self.frozen_stages >= 0: + self.patch_embed.eval() + for param in self.patch_embed.parameters(): + param.requires_grad = False + if self.use_abs_pos_embed: + self.absolute_pos_embed.requires_grad = False + self.drop_after_pos.eval() + + for i in range(1, self.frozen_stages + 1): + + if (i - 1) in self.out_indices: + norm_layer = getattr(self, f'norm{i-1}') + norm_layer.eval() + for param in norm_layer.parameters(): + param.requires_grad = False + + m = self.stages[i - 1] + m.eval() + for param in m.parameters(): + param.requires_grad = False + + def init_weights(self): + if self.init_cfg is None: + print(f'No pre-trained weights for ' + f'{self.__class__.__name__}, ' + f'training start from scratch') + if self.use_abs_pos_embed: + trunc_normal_(self.absolute_pos_embed, std=0.02) + for m in self.modules(): + if isinstance(m, nn.Linear): + trunc_normal_init(m, std=.02, bias=0.) + elif isinstance(m, nn.LayerNorm): + constant_init(m, 1.0) + else: + assert 'checkpoint' in self.init_cfg, f'Only support ' \ + f'specify `Pretrained` in ' \ + f'`init_cfg` in ' \ + f'{self.__class__.__name__} ' + ckpt = torch.load(self.init_cfg.checkpoint, map_location='cpu') + if 'state_dict' in ckpt: + _state_dict = ckpt['state_dict'] + elif 'model' in ckpt: + _state_dict = ckpt['model'] + else: + _state_dict = ckpt + if self.convert_weights: + # supported loading weight from original repo, + _state_dict = swin_converter(_state_dict) + + state_dict = OrderedDict() + for k, v in _state_dict.items(): + if k.startswith('backbone.'): + state_dict[k[9:]] = v + + # strip prefix of state_dict + if list(state_dict.keys())[0].startswith('module.'): + state_dict = {k[7:]: v for k, v in state_dict.items()} + + # reshape absolute position embedding + if state_dict.get('absolute_pos_embed') is not None: + absolute_pos_embed = state_dict['absolute_pos_embed'] + N1, L, C1 = absolute_pos_embed.size() + N2, C2, H, W = self.absolute_pos_embed.size() + if N1 != N2 or C1 != C2 or L != H * W: + print('Error in loading absolute_pos_embed, pass') + else: + state_dict['absolute_pos_embed'] = absolute_pos_embed.view( + N2, H, W, C2).permute(0, 3, 1, 2).contiguous() + + # interpolate position bias table if needed + relative_position_bias_table_keys = [ + k for k in state_dict.keys() + if 'relative_position_bias_table' in k + ] + for table_key in relative_position_bias_table_keys: + table_pretrained = state_dict[table_key] + table_current = self.state_dict()[table_key] + L1, nH1 = table_pretrained.size() + L2, nH2 = table_current.size() + if nH1 != nH2: + print(f'Error in loading {table_key}, pass') + elif L1 != L2: + S1 = int(L1**0.5) + S2 = int(L2**0.5) + table_pretrained_resized = F.interpolate( + table_pretrained.permute(1, 0).reshape(1, nH1, S1, S1), + size=(S2, S2), + mode='bicubic') + state_dict[table_key] = table_pretrained_resized.view( + nH2, L2).permute(1, 0).contiguous() + + # load state_dict + self.load_state_dict(state_dict, False) + + def forward(self, batch_dict): + x = batch_dict['camera_imgs'] + B, N, C, H, W = x.size() + x = x.view(B * N, C, H, W) + x, hw_shape = self.patch_embed(x) + + if self.use_abs_pos_embed: + x = x + self.absolute_pos_embed + x = self.drop_after_pos(x) + + outs = [] + for i, stage in enumerate(self.stages): + x, hw_shape, out, out_hw_shape = stage(x, hw_shape) + if i in self.out_indices: + norm_layer = getattr(self, f'norm{i}') + out = norm_layer(out) + out = out.view(-1, *out_hw_shape, + self.num_features[i]).permute(0, 3, 1, + 2).contiguous() + outs.append(out) + batch_dict['image_features'] = outs + return batch_dict