diff --git a/pcdet/models/backbones_3d/spconv_backbone_2d.py b/pcdet/models/backbones_3d/spconv_backbone_2d.py new file mode 100644 index 0000000..3784ada --- /dev/null +++ b/pcdet/models/backbones_3d/spconv_backbone_2d.py @@ -0,0 +1,300 @@ +from functools import partial + +import torch.nn as nn + +from ...utils.spconv_utils import replace_feature, spconv + + +def post_act_block(in_channels, out_channels, kernel_size, indice_key=None, stride=1, padding=0, + conv_type='subm', norm_fn=None): + + if conv_type == 'subm': + conv = spconv.SubMConv2d(in_channels, out_channels, kernel_size, bias=False, indice_key=indice_key) + elif conv_type == 'spconv': + conv = spconv.SparseConv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, + bias=False, indice_key=indice_key) + elif conv_type == 'inverseconv': + conv = spconv.SparseInverseConv2d(in_channels, out_channels, kernel_size, indice_key=indice_key, bias=False) + else: + raise NotImplementedError + + m = spconv.SparseSequential( + conv, + norm_fn(out_channels), + nn.ReLU(), + ) + + return m + + +def post_act_block_dense(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, norm_fn=None): + m = nn.Sequential( + nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=padding, dilation=dilation, bias=False), + norm_fn(out_channels), + nn.ReLU(), + ) + + return m + + +class SparseBasicBlock(spconv.SparseModule): + expansion = 1 + + def __init__(self, inplanes, planes, stride=1, norm_fn=None, downsample=None, indice_key=None): + super(SparseBasicBlock, self).__init__() + + assert norm_fn is not None + bias = norm_fn is not None + self.conv1 = spconv.SubMConv2d( + inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=bias, indice_key=indice_key + ) + self.bn1 = norm_fn(planes) + self.relu = nn.ReLU() + self.conv2 = spconv.SubMConv2d( + planes, planes, kernel_size=3, stride=stride, padding=1, bias=bias, indice_key=indice_key + ) + self.bn2 = norm_fn(planes) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + identity = x + + out = self.conv1(x) + out = replace_feature(out, self.bn1(out.features)) + out = replace_feature(out, self.relu(out.features)) + + out = self.conv2(out) + out = replace_feature(out, self.bn2(out.features)) + + if self.downsample is not None: + identity = self.downsample(x) + + out = replace_feature(out, out.features + identity.features) + out = replace_feature(out, self.relu(out.features)) + + return out + + +class BasicBlock(nn.Module): + expansion = 1 + + def __init__(self, inplanes, planes, stride=1, norm_fn=None, downsample=None): + super(BasicBlock, self).__init__() + + assert norm_fn is not None + bias = norm_fn is not None + self.conv1 = nn.Conv2d(inplanes, planes, 3, stride=stride, padding=1, bias=bias) + self.bn1 = norm_fn(planes) + self.relu = nn.ReLU() + self.conv2 = nn.Conv2d(planes, planes, 3, stride=stride, padding=1, bias=bias) + self.bn2 = norm_fn(planes) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + identity = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + + if self.downsample is not None: + identity = self.downsample(x) + + out = out + identity + out = self.relu(out) + + return out + + +class PillarBackBone8x(nn.Module): + def __init__(self, model_cfg, input_channels, grid_size, **kwargs): + super().__init__() + self.model_cfg = model_cfg + norm_fn = partial(nn.BatchNorm1d, eps=1e-3, momentum=0.01) + self.sparse_shape = grid_size[[1, 0]] + + block = post_act_block + dense_block = post_act_block_dense + + self.conv1 = spconv.SparseSequential( + block(32, 32, 3, norm_fn=norm_fn, padding=1, indice_key='subm1'), + block(32, 32, 3, norm_fn=norm_fn, padding=1, indice_key='subm1'), + ) + + self.conv2 = spconv.SparseSequential( + # [1600, 1408] <- [800, 704] + block(32, 64, 3, norm_fn=norm_fn, stride=2, padding=1, indice_key='spconv2', conv_type='spconv'), + block(64, 64, 3, norm_fn=norm_fn, padding=1, indice_key='subm2'), + block(64, 64, 3, norm_fn=norm_fn, padding=1, indice_key='subm2'), + ) + + self.conv3 = spconv.SparseSequential( + # [800, 704] <- [400, 352] + block(64, 128, 3, norm_fn=norm_fn, stride=2, padding=1, indice_key='spconv3', conv_type='spconv'), + block(128, 128, 3, norm_fn=norm_fn, padding=1, indice_key='subm3'), + block(128, 128, 3, norm_fn=norm_fn, padding=1, indice_key='subm3'), + ) + + self.conv4 = spconv.SparseSequential( + # [400, 352] <- [200, 176] + block(128, 256, 3, norm_fn=norm_fn, stride=2, padding=1, indice_key='spconv4', conv_type='spconv'), + block(256, 256, 3, norm_fn=norm_fn, padding=1, indice_key='subm4'), + block(256, 256, 3, norm_fn=norm_fn, padding=1, indice_key='subm4'), + ) + + norm_fn = partial(nn.BatchNorm2d, eps=1e-3, momentum=0.01) + self.conv5 = nn.Sequential( + # [200, 176] <- [100, 88] + dense_block(256, 256, 3, norm_fn=norm_fn, stride=2, padding=1), + dense_block(256, 256, 3, norm_fn=norm_fn, padding=1), + dense_block(256, 256, 3, norm_fn=norm_fn, padding=1), + ) + + self.num_point_features = 256 + self.backbone_channels = { + 'x_conv1': 32, + 'x_conv2': 64, + 'x_conv3': 128, + 'x_conv4': 256, + 'x_conv5': 256 + } + + + def forward(self, batch_dict): + pillar_features, pillar_coords = batch_dict['pillar_features'], batch_dict['pillar_coords'] + batch_size = batch_dict['batch_size'] + input_sp_tensor = spconv.SparseConvTensor( + features=pillar_features, + indices=pillar_coords.int(), + spatial_shape=self.sparse_shape, + batch_size=batch_size + ) + + x_conv1 = self.conv1(input_sp_tensor) + x_conv2 = self.conv2(x_conv1) + x_conv3 = self.conv3(x_conv2) + x_conv4 = self.conv4(x_conv3) + x_conv4 = x_conv4.dense() + x_conv5 = self.conv5(x_conv4) + + batch_dict.update({ + 'multi_scale_2d_features': { + 'x_conv1': x_conv1, + 'x_conv2': x_conv2, + 'x_conv3': x_conv3, + 'x_conv4': x_conv4, + 'x_conv5': x_conv5, + } + }) + batch_dict.update({ + 'multi_scale_2d_strides': { + 'x_conv1': 1, + 'x_conv2': 2, + 'x_conv3': 4, + 'x_conv4': 8, + 'x_conv5': 16, + } + }) + + return batch_dict + + +class PillarRes18BackBone8x(nn.Module): + def __init__(self, model_cfg, input_channels, grid_size, **kwargs): + super().__init__() + self.model_cfg = model_cfg + norm_fn = partial(nn.BatchNorm1d, eps=1e-3, momentum=0.01) + self.sparse_shape = grid_size[[1, 0]] + + block = post_act_block + dense_block = post_act_block_dense + + self.conv1 = spconv.SparseSequential( + SparseBasicBlock(32, 32, norm_fn=norm_fn, indice_key='res1'), + SparseBasicBlock(32, 32, norm_fn=norm_fn, indice_key='res1'), + ) + + self.conv2 = spconv.SparseSequential( + # [1600, 1408] <- [800, 704] + block(32, 64, 3, norm_fn=norm_fn, stride=2, padding=1, indice_key='spconv2', conv_type='spconv'), + SparseBasicBlock(64, 64, norm_fn=norm_fn, indice_key='res2'), + SparseBasicBlock(64, 64, norm_fn=norm_fn, indice_key='res2'), + ) + + self.conv3 = spconv.SparseSequential( + # [800, 704] <- [400, 352] + block(64, 128, 3, norm_fn=norm_fn, stride=2, padding=1, indice_key='spconv3', conv_type='spconv'), + SparseBasicBlock(128, 128, norm_fn=norm_fn, indice_key='res3'), + SparseBasicBlock(128, 128, norm_fn=norm_fn, indice_key='res3'), + ) + + self.conv4 = spconv.SparseSequential( + # [400, 352] <- [200, 176] + block(128, 256, 3, norm_fn=norm_fn, stride=2, padding=1, indice_key='spconv4', conv_type='spconv'), + SparseBasicBlock(256, 256, norm_fn=norm_fn, indice_key='res4'), + SparseBasicBlock(256, 256, norm_fn=norm_fn, indice_key='res4'), + ) + + norm_fn = partial(nn.BatchNorm2d, eps=1e-3, momentum=0.01) + self.conv5 = nn.Sequential( + # [200, 176] <- [100, 88] + dense_block(256, 256, 3, norm_fn=norm_fn, stride=2, padding=1), + BasicBlock(256, 256, norm_fn=norm_fn), + BasicBlock(256, 256, norm_fn=norm_fn), + ) + + self.num_point_features = 256 + self.backbone_channels = { + 'x_conv1': 32, + 'x_conv2': 64, + 'x_conv3': 128, + 'x_conv4': 256, + 'x_conv5': 256 + } + + def forward(self, batch_dict): + pillar_features, pillar_coords = batch_dict['pillar_features'], batch_dict['pillar_coords'] + batch_size = batch_dict['batch_size'] + input_sp_tensor = spconv.SparseConvTensor( + features=pillar_features, + indices=pillar_coords.int(), + spatial_shape=self.sparse_shape, + batch_size=batch_size + ) + + x_conv1 = self.conv1(input_sp_tensor) + x_conv2 = self.conv2(x_conv1) + x_conv3 = self.conv3(x_conv2) + x_conv4 = self.conv4(x_conv3) + x_conv4 = x_conv4.dense() + x_conv5 = self.conv5(x_conv4) + + # batch_dict.update({ + # 'encoded_spconv_tensor': out, + # 'encoded_spconv_tensor_stride': 8 + # }) + batch_dict.update({ + 'multi_scale_2d_features': { + 'x_conv1': x_conv1, + 'x_conv2': x_conv2, + 'x_conv3': x_conv3, + 'x_conv4': x_conv4, + 'x_conv5': x_conv5, + } + }) + batch_dict.update({ + 'multi_scale_2d_strides': { + 'x_conv1': 1, + 'x_conv2': 2, + 'x_conv3': 4, + 'x_conv4': 8, + 'x_conv5': 16, + } + }) + + return batch_dict