This commit is contained in:
2025-09-21 20:19:03 +08:00
parent e5d55f1be6
commit 33e43a50b6

View File

@@ -0,0 +1,175 @@
import torch.nn as nn
from ...ops.pointnet2.pointnet2_stack import pointnet2_modules as pointnet2_stack_modules
from ...utils import common_utils
from .roi_head_template import RoIHeadTemplate
class PVRCNNHead(RoIHeadTemplate):
def __init__(self, input_channels, model_cfg, num_class=1, **kwargs):
super().__init__(num_class=num_class, model_cfg=model_cfg)
self.model_cfg = model_cfg
self.roi_grid_pool_layer, num_c_out = pointnet2_stack_modules.build_local_aggregation_module(
input_channels=input_channels, config=self.model_cfg.ROI_GRID_POOL
)
GRID_SIZE = self.model_cfg.ROI_GRID_POOL.GRID_SIZE
pre_channel = GRID_SIZE * GRID_SIZE * GRID_SIZE * num_c_out
shared_fc_list = []
for k in range(0, self.model_cfg.SHARED_FC.__len__()):
shared_fc_list.extend([
nn.Conv1d(pre_channel, self.model_cfg.SHARED_FC[k], kernel_size=1, bias=False),
nn.BatchNorm1d(self.model_cfg.SHARED_FC[k]),
nn.ReLU()
])
pre_channel = self.model_cfg.SHARED_FC[k]
if k != self.model_cfg.SHARED_FC.__len__() - 1 and self.model_cfg.DP_RATIO > 0:
shared_fc_list.append(nn.Dropout(self.model_cfg.DP_RATIO))
self.shared_fc_layer = nn.Sequential(*shared_fc_list)
self.cls_layers = self.make_fc_layers(
input_channels=pre_channel, output_channels=self.num_class, fc_list=self.model_cfg.CLS_FC
)
self.reg_layers = self.make_fc_layers(
input_channels=pre_channel,
output_channels=self.box_coder.code_size * self.num_class,
fc_list=self.model_cfg.REG_FC
)
self.init_weights(weight_init='xavier')
def init_weights(self, weight_init='xavier'):
if weight_init == 'kaiming':
init_func = nn.init.kaiming_normal_
elif weight_init == 'xavier':
init_func = nn.init.xavier_normal_
elif weight_init == 'normal':
init_func = nn.init.normal_
else:
raise NotImplementedError
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Conv1d):
if weight_init == 'normal':
init_func(m.weight, mean=0, std=0.001)
else:
init_func(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
nn.init.normal_(self.reg_layers[-1].weight, mean=0, std=0.001)
def roi_grid_pool(self, batch_dict):
"""
Args:
batch_dict:
batch_size:
rois: (B, num_rois, 7 + C)
point_coords: (num_points, 4) [bs_idx, x, y, z]
point_features: (num_points, C)
point_cls_scores: (N1 + N2 + N3 + ..., 1)
point_part_offset: (N1 + N2 + N3 + ..., 3)
Returns:
"""
batch_size = batch_dict['batch_size']
rois = batch_dict['rois']
point_coords = batch_dict['point_coords']
point_features = batch_dict['point_features']
point_features = point_features * batch_dict['point_cls_scores'].view(-1, 1)
global_roi_grid_points, local_roi_grid_points = self.get_global_grid_points_of_roi(
rois, grid_size=self.model_cfg.ROI_GRID_POOL.GRID_SIZE
) # (BxN, 6x6x6, 3)
global_roi_grid_points = global_roi_grid_points.view(batch_size, -1, 3) # (B, Nx6x6x6, 3)
xyz = point_coords[:, 1:4]
xyz_batch_cnt = xyz.new_zeros(batch_size).int()
batch_idx = point_coords[:, 0]
for k in range(batch_size):
xyz_batch_cnt[k] = (batch_idx == k).sum()
new_xyz = global_roi_grid_points.view(-1, 3)
new_xyz_batch_cnt = xyz.new_zeros(batch_size).int().fill_(global_roi_grid_points.shape[1])
pooled_points, pooled_features = self.roi_grid_pool_layer(
xyz=xyz.contiguous(),
xyz_batch_cnt=xyz_batch_cnt,
new_xyz=new_xyz,
new_xyz_batch_cnt=new_xyz_batch_cnt,
features=point_features.contiguous(),
) # (M1 + M2 ..., C)
pooled_features = pooled_features.view(
-1, self.model_cfg.ROI_GRID_POOL.GRID_SIZE ** 3,
pooled_features.shape[-1]
) # (BxN, 6x6x6, C)
return pooled_features
def get_global_grid_points_of_roi(self, rois, grid_size):
rois = rois.view(-1, rois.shape[-1])
batch_size_rcnn = rois.shape[0]
local_roi_grid_points = self.get_dense_grid_points(rois, batch_size_rcnn, grid_size) # (B, 6x6x6, 3)
global_roi_grid_points = common_utils.rotate_points_along_z(
local_roi_grid_points.clone(), rois[:, 6]
).squeeze(dim=1)
global_center = rois[:, 0:3].clone()
global_roi_grid_points += global_center.unsqueeze(dim=1)
return global_roi_grid_points, local_roi_grid_points
@staticmethod
def get_dense_grid_points(rois, batch_size_rcnn, grid_size):
faked_features = rois.new_ones((grid_size, grid_size, grid_size))
dense_idx = faked_features.nonzero() # (N, 3) [x_idx, y_idx, z_idx]
dense_idx = dense_idx.repeat(batch_size_rcnn, 1, 1).float() # (B, 6x6x6, 3)
local_roi_size = rois.view(batch_size_rcnn, -1)[:, 3:6]
roi_grid_points = (dense_idx + 0.5) / grid_size * local_roi_size.unsqueeze(dim=1) \
- (local_roi_size.unsqueeze(dim=1) / 2) # (B, 6x6x6, 3)
return roi_grid_points
def forward(self, batch_dict):
"""
:param input_data: input dict
:return:
"""
targets_dict = self.proposal_layer(
batch_dict, nms_config=self.model_cfg.NMS_CONFIG['TRAIN' if self.training else 'TEST']
)
if self.training:
targets_dict = batch_dict.get('roi_targets_dict', None)
if targets_dict is None:
targets_dict = self.assign_targets(batch_dict)
batch_dict['rois'] = targets_dict['rois']
batch_dict['roi_labels'] = targets_dict['roi_labels']
# RoI aware pooling
pooled_features = self.roi_grid_pool(batch_dict) # (BxN, 6x6x6, C)
grid_size = self.model_cfg.ROI_GRID_POOL.GRID_SIZE
batch_size_rcnn = pooled_features.shape[0]
pooled_features = pooled_features.permute(0, 2, 1).\
contiguous().view(batch_size_rcnn, -1, grid_size, grid_size, grid_size) # (BxN, C, 6, 6, 6)
shared_features = self.shared_fc_layer(pooled_features.view(batch_size_rcnn, -1, 1))
rcnn_cls = self.cls_layers(shared_features).transpose(1, 2).contiguous().squeeze(dim=1) # (B, 1 or 2)
rcnn_reg = self.reg_layers(shared_features).transpose(1, 2).contiguous().squeeze(dim=1) # (B, C)
if not self.training:
batch_cls_preds, batch_box_preds = self.generate_predicted_boxes(
batch_size=batch_dict['batch_size'], rois=batch_dict['rois'], cls_preds=rcnn_cls, box_preds=rcnn_reg
)
batch_dict['batch_cls_preds'] = batch_cls_preds
batch_dict['batch_box_preds'] = batch_box_preds
batch_dict['cls_preds_normalized'] = False
else:
targets_dict['rcnn_cls'] = rcnn_cls
targets_dict['rcnn_reg'] = rcnn_reg
self.forward_ret_dict = targets_dict
return batch_dict