Add File
This commit is contained in:
@@ -0,0 +1,162 @@
|
||||
from collections import OrderedDict
|
||||
from pathlib import Path
|
||||
from torch import hub
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
try:
|
||||
from kornia.enhance.normalize import normalize
|
||||
except:
|
||||
pass
|
||||
# print('Warning: kornia is not installed. This package is only required by CaDDN')
|
||||
|
||||
|
||||
class DDNTemplate(nn.Module):
|
||||
|
||||
def __init__(self, constructor, feat_extract_layer, num_classes, pretrained_path=None, aux_loss=None):
|
||||
"""
|
||||
Initializes depth distribution network.
|
||||
Args:
|
||||
constructor: function, Model constructor
|
||||
feat_extract_layer: string, Layer to extract features from
|
||||
num_classes: int, Number of classes
|
||||
pretrained_path: string, (Optional) Path of the model to load weights from
|
||||
aux_loss: bool, Flag to include auxillary loss
|
||||
"""
|
||||
super().__init__()
|
||||
self.num_classes = num_classes
|
||||
self.pretrained_path = pretrained_path
|
||||
self.pretrained = pretrained_path is not None
|
||||
self.aux_loss = aux_loss
|
||||
|
||||
if self.pretrained:
|
||||
# Preprocess Module
|
||||
self.norm_mean = torch.Tensor([0.485, 0.456, 0.406])
|
||||
self.norm_std = torch.Tensor([0.229, 0.224, 0.225])
|
||||
|
||||
# Model
|
||||
self.model = self.get_model(constructor=constructor)
|
||||
self.feat_extract_layer = feat_extract_layer
|
||||
self.model.backbone.return_layers = {
|
||||
feat_extract_layer: 'features',
|
||||
**self.model.backbone.return_layers
|
||||
}
|
||||
|
||||
def get_model(self, constructor):
|
||||
"""
|
||||
Get model
|
||||
Args:
|
||||
constructor: function, Model constructor
|
||||
Returns:
|
||||
model: nn.Module, Model
|
||||
"""
|
||||
# Get model
|
||||
model = constructor(pretrained=False,
|
||||
pretrained_backbone=False,
|
||||
num_classes=self.num_classes,
|
||||
aux_loss=self.aux_loss)
|
||||
|
||||
# Update weights
|
||||
if self.pretrained_path is not None:
|
||||
model_dict = model.state_dict()
|
||||
|
||||
# Download pretrained model if not available yet
|
||||
checkpoint_path = Path(self.pretrained_path)
|
||||
if not checkpoint_path.exists():
|
||||
checkpoint = checkpoint_path.name
|
||||
save_dir = checkpoint_path.parent
|
||||
save_dir.mkdir(parents=True)
|
||||
url = f'https://download.pytorch.org/models/{checkpoint}'
|
||||
hub.load_state_dict_from_url(url, save_dir)
|
||||
|
||||
# Get pretrained state dict
|
||||
pretrained_dict = torch.load(self.pretrained_path)
|
||||
pretrained_dict = self.filter_pretrained_dict(model_dict=model_dict,
|
||||
pretrained_dict=pretrained_dict)
|
||||
|
||||
# Update current model state dict
|
||||
model_dict.update(pretrained_dict)
|
||||
model.load_state_dict(model_dict)
|
||||
|
||||
return model
|
||||
|
||||
def filter_pretrained_dict(self, model_dict, pretrained_dict):
|
||||
"""
|
||||
Removes layers from pretrained state dict that are not used or changed in model
|
||||
Args:
|
||||
model_dict: dict, Default model state dictionary
|
||||
pretrained_dict: dict, Pretrained model state dictionary
|
||||
Returns:
|
||||
pretrained_dict: dict, Pretrained model state dictionary with removed weights
|
||||
"""
|
||||
# Removes aux classifier weights if not used
|
||||
if "aux_classifier.0.weight" in pretrained_dict and "aux_classifier.0.weight" not in model_dict:
|
||||
pretrained_dict = {key: value for key, value in pretrained_dict.items()
|
||||
if "aux_classifier" not in key}
|
||||
|
||||
# Removes final conv layer from weights if number of classes are different
|
||||
model_num_classes = model_dict["classifier.4.weight"].shape[0]
|
||||
pretrained_num_classes = pretrained_dict["classifier.4.weight"].shape[0]
|
||||
if model_num_classes != pretrained_num_classes:
|
||||
pretrained_dict.pop("classifier.4.weight")
|
||||
pretrained_dict.pop("classifier.4.bias")
|
||||
|
||||
return pretrained_dict
|
||||
|
||||
def forward(self, images):
|
||||
"""
|
||||
Forward pass
|
||||
Args:
|
||||
images: (N, 3, H_in, W_in), Input images
|
||||
Returns
|
||||
result: dict[torch.Tensor], Depth distribution result
|
||||
features: (N, C, H_out, W_out), Image features
|
||||
logits: (N, num_classes, H_out, W_out), Classification logits
|
||||
aux: (N, num_classes, H_out, W_out), Auxillary classification logits
|
||||
"""
|
||||
# Preprocess images
|
||||
x = self.preprocess(images)
|
||||
|
||||
# Extract features
|
||||
result = OrderedDict()
|
||||
features = self.model.backbone(x)
|
||||
result['features'] = features['features']
|
||||
feat_shape = features['features'].shape[-2:]
|
||||
|
||||
# Prediction classification logits
|
||||
x = features["out"]
|
||||
x = self.model.classifier(x)
|
||||
x = F.interpolate(x, size=feat_shape, mode='bilinear', align_corners=False)
|
||||
result["logits"] = x
|
||||
|
||||
# Prediction auxillary classification logits
|
||||
if self.model.aux_classifier is not None:
|
||||
x = features["aux"]
|
||||
x = self.model.aux_classifier(x)
|
||||
x = F.interpolate(x, size=feat_shape, mode='bilinear', align_corners=False)
|
||||
result["aux"] = x
|
||||
|
||||
return result
|
||||
|
||||
def preprocess(self, images):
|
||||
"""
|
||||
Preprocess images
|
||||
Args:
|
||||
images: (N, 3, H, W), Input images
|
||||
Return
|
||||
x: (N, 3, H, W), Preprocessed images
|
||||
"""
|
||||
x = images
|
||||
if self.pretrained:
|
||||
# Create a mask for padded pixels
|
||||
mask = (x == 0)
|
||||
|
||||
# Match ResNet pretrained preprocessing
|
||||
x = normalize(x, mean=self.norm_mean, std=self.norm_std)
|
||||
|
||||
# Make padded pixels = 0
|
||||
x[mask] = 0
|
||||
|
||||
return x
|
||||
Reference in New Issue
Block a user