Add File
This commit is contained in:
@@ -0,0 +1,162 @@
|
|||||||
|
from collections import OrderedDict
|
||||||
|
from pathlib import Path
|
||||||
|
from torch import hub
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
try:
|
||||||
|
from kornia.enhance.normalize import normalize
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
# print('Warning: kornia is not installed. This package is only required by CaDDN')
|
||||||
|
|
||||||
|
|
||||||
|
class DDNTemplate(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, constructor, feat_extract_layer, num_classes, pretrained_path=None, aux_loss=None):
|
||||||
|
"""
|
||||||
|
Initializes depth distribution network.
|
||||||
|
Args:
|
||||||
|
constructor: function, Model constructor
|
||||||
|
feat_extract_layer: string, Layer to extract features from
|
||||||
|
num_classes: int, Number of classes
|
||||||
|
pretrained_path: string, (Optional) Path of the model to load weights from
|
||||||
|
aux_loss: bool, Flag to include auxillary loss
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.num_classes = num_classes
|
||||||
|
self.pretrained_path = pretrained_path
|
||||||
|
self.pretrained = pretrained_path is not None
|
||||||
|
self.aux_loss = aux_loss
|
||||||
|
|
||||||
|
if self.pretrained:
|
||||||
|
# Preprocess Module
|
||||||
|
self.norm_mean = torch.Tensor([0.485, 0.456, 0.406])
|
||||||
|
self.norm_std = torch.Tensor([0.229, 0.224, 0.225])
|
||||||
|
|
||||||
|
# Model
|
||||||
|
self.model = self.get_model(constructor=constructor)
|
||||||
|
self.feat_extract_layer = feat_extract_layer
|
||||||
|
self.model.backbone.return_layers = {
|
||||||
|
feat_extract_layer: 'features',
|
||||||
|
**self.model.backbone.return_layers
|
||||||
|
}
|
||||||
|
|
||||||
|
def get_model(self, constructor):
|
||||||
|
"""
|
||||||
|
Get model
|
||||||
|
Args:
|
||||||
|
constructor: function, Model constructor
|
||||||
|
Returns:
|
||||||
|
model: nn.Module, Model
|
||||||
|
"""
|
||||||
|
# Get model
|
||||||
|
model = constructor(pretrained=False,
|
||||||
|
pretrained_backbone=False,
|
||||||
|
num_classes=self.num_classes,
|
||||||
|
aux_loss=self.aux_loss)
|
||||||
|
|
||||||
|
# Update weights
|
||||||
|
if self.pretrained_path is not None:
|
||||||
|
model_dict = model.state_dict()
|
||||||
|
|
||||||
|
# Download pretrained model if not available yet
|
||||||
|
checkpoint_path = Path(self.pretrained_path)
|
||||||
|
if not checkpoint_path.exists():
|
||||||
|
checkpoint = checkpoint_path.name
|
||||||
|
save_dir = checkpoint_path.parent
|
||||||
|
save_dir.mkdir(parents=True)
|
||||||
|
url = f'https://download.pytorch.org/models/{checkpoint}'
|
||||||
|
hub.load_state_dict_from_url(url, save_dir)
|
||||||
|
|
||||||
|
# Get pretrained state dict
|
||||||
|
pretrained_dict = torch.load(self.pretrained_path)
|
||||||
|
pretrained_dict = self.filter_pretrained_dict(model_dict=model_dict,
|
||||||
|
pretrained_dict=pretrained_dict)
|
||||||
|
|
||||||
|
# Update current model state dict
|
||||||
|
model_dict.update(pretrained_dict)
|
||||||
|
model.load_state_dict(model_dict)
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
|
def filter_pretrained_dict(self, model_dict, pretrained_dict):
|
||||||
|
"""
|
||||||
|
Removes layers from pretrained state dict that are not used or changed in model
|
||||||
|
Args:
|
||||||
|
model_dict: dict, Default model state dictionary
|
||||||
|
pretrained_dict: dict, Pretrained model state dictionary
|
||||||
|
Returns:
|
||||||
|
pretrained_dict: dict, Pretrained model state dictionary with removed weights
|
||||||
|
"""
|
||||||
|
# Removes aux classifier weights if not used
|
||||||
|
if "aux_classifier.0.weight" in pretrained_dict and "aux_classifier.0.weight" not in model_dict:
|
||||||
|
pretrained_dict = {key: value for key, value in pretrained_dict.items()
|
||||||
|
if "aux_classifier" not in key}
|
||||||
|
|
||||||
|
# Removes final conv layer from weights if number of classes are different
|
||||||
|
model_num_classes = model_dict["classifier.4.weight"].shape[0]
|
||||||
|
pretrained_num_classes = pretrained_dict["classifier.4.weight"].shape[0]
|
||||||
|
if model_num_classes != pretrained_num_classes:
|
||||||
|
pretrained_dict.pop("classifier.4.weight")
|
||||||
|
pretrained_dict.pop("classifier.4.bias")
|
||||||
|
|
||||||
|
return pretrained_dict
|
||||||
|
|
||||||
|
def forward(self, images):
|
||||||
|
"""
|
||||||
|
Forward pass
|
||||||
|
Args:
|
||||||
|
images: (N, 3, H_in, W_in), Input images
|
||||||
|
Returns
|
||||||
|
result: dict[torch.Tensor], Depth distribution result
|
||||||
|
features: (N, C, H_out, W_out), Image features
|
||||||
|
logits: (N, num_classes, H_out, W_out), Classification logits
|
||||||
|
aux: (N, num_classes, H_out, W_out), Auxillary classification logits
|
||||||
|
"""
|
||||||
|
# Preprocess images
|
||||||
|
x = self.preprocess(images)
|
||||||
|
|
||||||
|
# Extract features
|
||||||
|
result = OrderedDict()
|
||||||
|
features = self.model.backbone(x)
|
||||||
|
result['features'] = features['features']
|
||||||
|
feat_shape = features['features'].shape[-2:]
|
||||||
|
|
||||||
|
# Prediction classification logits
|
||||||
|
x = features["out"]
|
||||||
|
x = self.model.classifier(x)
|
||||||
|
x = F.interpolate(x, size=feat_shape, mode='bilinear', align_corners=False)
|
||||||
|
result["logits"] = x
|
||||||
|
|
||||||
|
# Prediction auxillary classification logits
|
||||||
|
if self.model.aux_classifier is not None:
|
||||||
|
x = features["aux"]
|
||||||
|
x = self.model.aux_classifier(x)
|
||||||
|
x = F.interpolate(x, size=feat_shape, mode='bilinear', align_corners=False)
|
||||||
|
result["aux"] = x
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
|
def preprocess(self, images):
|
||||||
|
"""
|
||||||
|
Preprocess images
|
||||||
|
Args:
|
||||||
|
images: (N, 3, H, W), Input images
|
||||||
|
Return
|
||||||
|
x: (N, 3, H, W), Preprocessed images
|
||||||
|
"""
|
||||||
|
x = images
|
||||||
|
if self.pretrained:
|
||||||
|
# Create a mask for padded pixels
|
||||||
|
mask = (x == 0)
|
||||||
|
|
||||||
|
# Match ResNet pretrained preprocessing
|
||||||
|
x = normalize(x, mean=self.norm_mean, std=self.norm_std)
|
||||||
|
|
||||||
|
# Make padded pixels = 0
|
||||||
|
x[mask] = 0
|
||||||
|
|
||||||
|
return x
|
||||||
Reference in New Issue
Block a user