This commit is contained in:
2025-09-21 20:18:42 +08:00
parent 385f4bccd4
commit 82563338da

View File

@@ -0,0 +1,258 @@
import torch
from torch import nn
from pcdet.ops.bev_pool import bev_pool
def gen_dx_bx(xbound, ybound, zbound):
dx = torch.Tensor([row[2] for row in [xbound, ybound, zbound]])
bx = torch.Tensor([row[0] + row[2] / 2.0 for row in [xbound, ybound, zbound]])
nx = torch.LongTensor(
[(row[1] - row[0]) / row[2] for row in [xbound, ybound, zbound]]
)
return dx, bx, nx
class DepthLSSTransform(nn.Module):
"""
This module implements LSS, which lists images into 3D and then splats onto bev features.
This code is adapted from https://github.com/mit-han-lab/bevfusion/ with minimal modifications.
"""
def __init__(self, model_cfg):
super().__init__()
self.model_cfg = model_cfg
in_channel = self.model_cfg.IN_CHANNEL
out_channel = self.model_cfg.OUT_CHANNEL
self.image_size = self.model_cfg.IMAGE_SIZE
self.feature_size = self.model_cfg.FEATURE_SIZE
xbound = self.model_cfg.XBOUND
ybound = self.model_cfg.YBOUND
zbound = self.model_cfg.ZBOUND
self.dbound = self.model_cfg.DBOUND
downsample = self.model_cfg.DOWNSAMPLE
dx, bx, nx = gen_dx_bx(xbound, ybound, zbound)
self.dx = nn.Parameter(dx, requires_grad=False)
self.bx = nn.Parameter(bx, requires_grad=False)
self.nx = nn.Parameter(nx, requires_grad=False)
self.C = out_channel
self.frustum = self.create_frustum()
self.D = self.frustum.shape[0]
self.dtransform = nn.Sequential(
nn.Conv2d(1, 8, 1),
nn.BatchNorm2d(8),
nn.ReLU(True),
nn.Conv2d(8, 32, 5, stride=4, padding=2),
nn.BatchNorm2d(32),
nn.ReLU(True),
nn.Conv2d(32, 64, 5, stride=2, padding=2),
nn.BatchNorm2d(64),
nn.ReLU(True),
)
self.depthnet = nn.Sequential(
nn.Conv2d(in_channel + 64, in_channel, 3, padding=1),
nn.BatchNorm2d(in_channel),
nn.ReLU(True),
nn.Conv2d(in_channel, in_channel, 3, padding=1),
nn.BatchNorm2d(in_channel),
nn.ReLU(True),
nn.Conv2d(in_channel, self.D + self.C, 1),
)
if downsample > 1:
assert downsample == 2, downsample
self.downsample = nn.Sequential(
nn.Conv2d(out_channel, out_channel, 3, padding=1, bias=False),
nn.BatchNorm2d(out_channel),
nn.ReLU(True),
nn.Conv2d(out_channel, out_channel, 3, stride=downsample, padding=1, bias=False),
nn.BatchNorm2d(out_channel),
nn.ReLU(True),
nn.Conv2d(out_channel, out_channel, 3, padding=1, bias=False),
nn.BatchNorm2d(out_channel),
nn.ReLU(True),
)
else:
self.downsample = nn.Identity()
def create_frustum(self):
iH, iW = self.image_size
fH, fW = self.feature_size
ds = torch.arange(*self.dbound, dtype=torch.float).view(-1, 1, 1).expand(-1, fH, fW)
D, _, _ = ds.shape
xs = torch.linspace(0, iW - 1, fW, dtype=torch.float).view(1, 1, fW).expand(D, fH, fW)
ys = torch.linspace(0, iH - 1, fH, dtype=torch.float).view(1, fH, 1).expand(D, fH, fW)
frustum = torch.stack((xs, ys, ds), -1)
return nn.Parameter(frustum, requires_grad=False)
def get_geometry(self, camera2lidar_rots, camera2lidar_trans, intrins, post_rots, post_trans, **kwargs):
camera2lidar_rots = camera2lidar_rots.to(torch.float)
camera2lidar_trans = camera2lidar_trans.to(torch.float)
intrins = intrins.to(torch.float)
post_rots = post_rots.to(torch.float)
post_trans = post_trans.to(torch.float)
B, N, _ = camera2lidar_trans.shape
# undo post-transformation
# B x N x D x H x W x 3
points = self.frustum - post_trans.view(B, N, 1, 1, 1, 3)
points = torch.inverse(post_rots).view(B, N, 1, 1, 1, 3, 3).matmul(points.unsqueeze(-1))
# cam_to_lidar
points = torch.cat((points[:, :, :, :, :, :2] * points[:, :, :, :, :, 2:3], points[:, :, :, :, :, 2:3]), 5)
combine = camera2lidar_rots.matmul(torch.inverse(intrins))
points = combine.view(B, N, 1, 1, 1, 3, 3).matmul(points).squeeze(-1)
points += camera2lidar_trans.view(B, N, 1, 1, 1, 3)
if "extra_rots" in kwargs:
extra_rots = kwargs["extra_rots"]
points = extra_rots.view(B, 1, 1, 1, 1, 3, 3).repeat(1, N, 1, 1, 1, 1, 1) \
.matmul(points.unsqueeze(-1)).squeeze(-1)
if "extra_trans" in kwargs:
extra_trans = kwargs["extra_trans"]
points += extra_trans.view(B, 1, 1, 1, 1, 3).repeat(1, N, 1, 1, 1, 1)
return points
def bev_pool(self, geom_feats, x):
geom_feats = geom_feats.to(torch.float)
x = x.to(torch.float)
B, N, D, H, W, C = x.shape
Nprime = B * N * D * H * W
# flatten x
x = x.reshape(Nprime, C)
# flatten indices
geom_feats = ((geom_feats - (self.bx - self.dx / 2.0)) / self.dx).long()
geom_feats = geom_feats.view(Nprime, 3)
batch_ix = torch.cat([torch.full([Nprime // B, 1], ix, device=x.device, dtype=torch.long) for ix in range(B)])
geom_feats = torch.cat((geom_feats, batch_ix), 1)
# filter out points that are outside box
kept = (
(geom_feats[:, 0] >= 0)
& (geom_feats[:, 0] < self.nx[0])
& (geom_feats[:, 1] >= 0)
& (geom_feats[:, 1] < self.nx[1])
& (geom_feats[:, 2] >= 0)
& (geom_feats[:, 2] < self.nx[2])
)
x = x[kept]
geom_feats = geom_feats[kept]
x = bev_pool(x, geom_feats, B, self.nx[2], self.nx[0], self.nx[1])
# collapse Z
final = torch.cat(x.unbind(dim=2), 1)
return final
def get_cam_feats(self, x, d):
B, N, C, fH, fW = x.shape
d = d.view(B * N, *d.shape[2:])
x = x.view(B * N, C, fH, fW)
d = self.dtransform(d)
x = torch.cat([d, x], dim=1)
x = self.depthnet(x)
depth = x[:, : self.D].softmax(dim=1)
x = depth.unsqueeze(1) * x[:, self.D : (self.D + self.C)].unsqueeze(2)
x = x.view(B, N, self.C, self.D, fH, fW)
x = x.permute(0, 1, 3, 4, 5, 2)
return x
def forward(self, batch_dict):
"""
Args:
batch_dict:
image_fpn (list[tensor]): image features after image neck
Returns:
batch_dict:
spatial_features_img (tensor): bev features from image modality
"""
x = batch_dict['image_fpn']
x = x[0]
BN, C, H, W = x.size()
img = x.view(int(BN/6), 6, C, H, W)
camera_intrinsics = batch_dict['camera_intrinsics']
camera2lidar = batch_dict['camera2lidar']
img_aug_matrix = batch_dict['img_aug_matrix']
lidar_aug_matrix = batch_dict['lidar_aug_matrix']
lidar2image = batch_dict['lidar2image']
intrins = camera_intrinsics[..., :3, :3]
post_rots = img_aug_matrix[..., :3, :3]
post_trans = img_aug_matrix[..., :3, 3]
camera2lidar_rots = camera2lidar[..., :3, :3]
camera2lidar_trans = camera2lidar[..., :3, 3]
points = batch_dict['points']
batch_size = BN // 6
depth = torch.zeros(batch_size, img.shape[1], 1, *self.image_size).to(points[0].device)
for b in range(batch_size):
batch_mask = points[:,0] == b
cur_coords = points[batch_mask][:, 1:4]
cur_img_aug_matrix = img_aug_matrix[b]
cur_lidar_aug_matrix = lidar_aug_matrix[b]
cur_lidar2image = lidar2image[b]
# inverse aug
cur_coords -= cur_lidar_aug_matrix[:3, 3]
cur_coords = torch.inverse(cur_lidar_aug_matrix[:3, :3]).matmul(
cur_coords.transpose(1, 0)
)
# lidar2image
cur_coords = cur_lidar2image[:, :3, :3].matmul(cur_coords)
cur_coords += cur_lidar2image[:, :3, 3].reshape(-1, 3, 1)
# get 2d coords
dist = cur_coords[:, 2, :]
cur_coords[:, 2, :] = torch.clamp(cur_coords[:, 2, :], 1e-5, 1e5)
cur_coords[:, :2, :] /= cur_coords[:, 2:3, :]
# do image aug
cur_coords = cur_img_aug_matrix[:, :3, :3].matmul(cur_coords)
cur_coords += cur_img_aug_matrix[:, :3, 3].reshape(-1, 3, 1)
cur_coords = cur_coords[:, :2, :].transpose(1, 2)
# normalize coords for grid sample
cur_coords = cur_coords[..., [1, 0]]
# filter points outside of images
on_img = (
(cur_coords[..., 0] < self.image_size[0])
& (cur_coords[..., 0] >= 0)
& (cur_coords[..., 1] < self.image_size[1])
& (cur_coords[..., 1] >= 0)
)
for c in range(on_img.shape[0]):
masked_coords = cur_coords[c, on_img[c]].long()
masked_dist = dist[c, on_img[c]]
depth[b, c, 0, masked_coords[:, 0], masked_coords[:, 1]] = masked_dist
extra_rots = lidar_aug_matrix[..., :3, :3]
extra_trans = lidar_aug_matrix[..., :3, 3]
geom = self.get_geometry(
camera2lidar_rots, camera2lidar_trans, intrins, post_rots,
post_trans, extra_rots=extra_rots, extra_trans=extra_trans,
)
# use points depth to assist the depth prediction in images
x = self.get_cam_feats(img, depth)
x = self.bev_pool(geom, x)
x = self.downsample(x)
# convert bev features from (b, c, x, y) to (b, c, y, x)
x = x.permute(0, 1, 3, 2)
batch_dict['spatial_features_img'] = x
return batch_dict