This commit is contained in:
2025-09-21 20:18:36 +08:00
parent 9d3724d167
commit 85ccd91a7e

View File

@@ -0,0 +1,420 @@
"""
Evaluation Server
Written by Jiageng Mao
"""
import numpy as np
import numba
from .iou_utils import rotate_iou_gpu_eval
from .eval_utils import compute_split_parts, overall_filter, distance_filter, overall_distance_filter
iou_threshold_dict = {
'Car': 0.7,
'Bus': 0.7,
'Truck': 0.7,
'Pedestrian': 0.3,
'Cyclist': 0.5
}
superclass_iou_threshold_dict = {
'Vehicle': 0.7,
'Pedestrian': 0.3,
'Cyclist': 0.5
}
def get_evaluation_results(gt_annos, pred_annos, classes,
use_superclass=True,
iou_thresholds=None,
num_pr_points=50,
difficulty_mode='Overall&Distance',
ap_with_heading=True,
num_parts=100,
print_ok=False
):
if iou_thresholds is None:
if use_superclass:
iou_thresholds = superclass_iou_threshold_dict
else:
iou_thresholds = iou_threshold_dict
assert len(gt_annos) == len(pred_annos), "the number of GT must match predictions"
assert difficulty_mode in ['Overall&Distance', 'Overall', 'Distance'], "difficulty mode is not supported"
if use_superclass:
if ('Car' in classes) or ('Bus' in classes) or ('Truck' in classes):
assert ('Car' in classes) and ('Bus' in classes) and ('Truck' in classes), "Car/Bus/Truck must all exist for vehicle detection"
classes = [cls_name for cls_name in classes if cls_name not in ['Car', 'Bus', 'Truck']]
classes.insert(0, 'Vehicle')
num_samples = len(gt_annos)
split_parts = compute_split_parts(num_samples, num_parts)
ious = compute_iou3d(gt_annos, pred_annos, split_parts, with_heading=ap_with_heading)
num_classes = len(classes)
if difficulty_mode == 'Distance':
num_difficulties = 3
difficulty_types = ['0-30m', '30-50m', '50m-inf']
elif difficulty_mode == 'Overall':
num_difficulties = 1
difficulty_types = ['overall']
elif difficulty_mode == 'Overall&Distance':
num_difficulties = 4
difficulty_types = ['overall', '0-30m', '30-50m', '50m-inf']
else:
raise NotImplementedError
precision = np.zeros([num_classes, num_difficulties, num_pr_points+1])
recall = np.zeros([num_classes, num_difficulties, num_pr_points+1])
for cls_idx, cur_class in enumerate(classes):
iou_threshold = iou_thresholds[cur_class]
for diff_idx in range(num_difficulties):
### filter data & determine score thresholds on p-r curve ###
accum_all_scores, gt_flags, pred_flags = [], [], []
num_valid_gt = 0
for sample_idx in range(num_samples):
gt_anno = gt_annos[sample_idx]
pred_anno = pred_annos[sample_idx]
pred_score = pred_anno['score']
iou = ious[sample_idx]
gt_flag, pred_flag = filter_data(gt_anno, pred_anno, difficulty_mode,
difficulty_level=diff_idx, class_name=cur_class, use_superclass=use_superclass)
gt_flags.append(gt_flag)
pred_flags.append(pred_flag)
num_valid_gt += sum(gt_flag == 0)
accum_scores = accumulate_scores(iou, pred_score, gt_flag, pred_flag,
iou_threshold=iou_threshold)
accum_all_scores.append(accum_scores)
all_scores = np.concatenate(accum_all_scores, axis=0)
thresholds = get_thresholds(all_scores, num_valid_gt, num_pr_points=num_pr_points)
### compute tp/fp/fn ###
confusion_matrix = np.zeros([len(thresholds), 3]) # only record tp/fp/fn
for sample_idx in range(num_samples):
pred_score = pred_annos[sample_idx]['score']
iou = ious[sample_idx]
gt_flag, pred_flag = gt_flags[sample_idx], pred_flags[sample_idx]
for th_idx, score_th in enumerate(thresholds):
tp, fp, fn = compute_statistics(iou, pred_score, gt_flag, pred_flag,
score_threshold=score_th, iou_threshold=iou_threshold)
confusion_matrix[th_idx, 0] += tp
confusion_matrix[th_idx, 1] += fp
confusion_matrix[th_idx, 2] += fn
### draw p-r curve ###
for th_idx in range(len(thresholds)):
recall[cls_idx, diff_idx, th_idx] = confusion_matrix[th_idx, 0] / \
(confusion_matrix[th_idx, 0] + confusion_matrix[th_idx, 2])
precision[cls_idx, diff_idx, th_idx] = confusion_matrix[th_idx, 0] / \
(confusion_matrix[th_idx, 0] + confusion_matrix[th_idx, 1])
for th_idx in range(len(thresholds)):
precision[cls_idx, diff_idx, th_idx] = np.max(
precision[cls_idx, diff_idx, th_idx:], axis=-1)
recall[cls_idx, diff_idx, th_idx] = np.max(
recall[cls_idx, diff_idx, th_idx:], axis=-1)
AP = 0
for i in range(1, precision.shape[-1]):
AP += precision[..., i]
AP = AP / num_pr_points * 100
ret_dict = {}
ret_str = "\n|AP@%-9s|" % (str(num_pr_points))
for diff_type in difficulty_types:
ret_str += '%-12s|' % diff_type
ret_str += '\n'
for cls_idx, cur_class in enumerate(classes):
ret_str += "|%-12s|" % cur_class
for diff_idx in range(num_difficulties):
diff_type = difficulty_types[diff_idx]
key = 'AP_' + cur_class + '/' + diff_type
ap_score = AP[cls_idx,diff_idx]
ret_dict[key] = ap_score
ret_str += "%-12.2f|" % ap_score
ret_str += "\n"
mAP = np.mean(AP, axis=0)
ret_str += "|%-12s|" % 'mAP'
for diff_idx in range(num_difficulties):
diff_type = difficulty_types[diff_idx]
key = 'AP_mean' + '/' + diff_type
ap_score = mAP[diff_idx]
ret_dict[key] = ap_score
ret_str += "%-12.2f|" % ap_score
ret_str += "\n"
if print_ok:
print(ret_str)
return ret_str, ret_dict
@numba.jit(nopython=True)
def get_thresholds(scores, num_gt, num_pr_points):
eps = 1e-6
scores.sort()
scores = scores[::-1]
recall_level = 0
thresholds = []
for i, score in enumerate(scores):
l_recall = (i + 1) / num_gt
if i < (len(scores) - 1):
r_recall = (i + 2) / num_gt
else:
r_recall = l_recall
if (r_recall + l_recall < 2 * recall_level) and i < (len(scores) - 1):
continue
thresholds.append(score)
recall_level += 1 / num_pr_points
# avoid numerical errors
# while r_recall + l_recall >= 2 * recall_level:
while r_recall + l_recall + eps > 2 * recall_level:
thresholds.append(score)
recall_level += 1 / num_pr_points
return thresholds
@numba.jit(nopython=True)
def accumulate_scores(iou, pred_scores, gt_flag, pred_flag, iou_threshold):
num_gt = iou.shape[0]
num_pred = iou.shape[1]
assigned = np.full(num_pred, False)
accum_scores = np.zeros(num_gt)
accum_idx = 0
for i in range(num_gt):
if gt_flag[i] == -1: # not the same class
continue
det_idx = -1
detected_score = -1
for j in range(num_pred):
if pred_flag[j] == -1: # not the same class
continue
if assigned[j]:
continue
iou_ij = iou[i, j]
pred_score = pred_scores[j]
if (iou_ij > iou_threshold) and (pred_score > detected_score):
det_idx = j
detected_score = pred_score
if (detected_score == -1) and (gt_flag[i] == 0): # false negative
pass
elif (detected_score != -1) and (gt_flag[i] == 1 or pred_flag[det_idx] == 1): # ignore
assigned[det_idx] = True
elif detected_score != -1: # true positive
accum_scores[accum_idx] = pred_scores[det_idx]
accum_idx += 1
assigned[det_idx] = True
return accum_scores[:accum_idx]
@numba.jit(nopython=True)
def compute_statistics(iou, pred_scores, gt_flag, pred_flag, score_threshold, iou_threshold):
num_gt = iou.shape[0]
num_pred = iou.shape[1]
assigned = np.full(num_pred, False)
under_threshold = pred_scores < score_threshold
tp, fp, fn = 0, 0, 0
for i in range(num_gt):
if gt_flag[i] == -1: # different classes
continue
det_idx = -1
detected = False
best_matched_iou = 0
gt_assigned_to_ignore = False
for j in range(num_pred):
if pred_flag[j] == -1: # different classes
continue
if assigned[j]: # already assigned to other GT
continue
if under_threshold[j]: # compute only boxes above threshold
continue
iou_ij = iou[i, j]
if (iou_ij > iou_threshold) and (iou_ij > best_matched_iou or gt_assigned_to_ignore) and pred_flag[j] == 0:
best_matched_iou = iou_ij
det_idx = j
detected = True
gt_assigned_to_ignore = False
elif (iou_ij > iou_threshold) and (not detected) and pred_flag[j] == 1:
det_idx = j
detected = True
gt_assigned_to_ignore = True
if (not detected) and gt_flag[i] == 0: # false negative
fn += 1
elif detected and (gt_flag[i] == 1 or pred_flag[det_idx] == 1): # ignore
assigned[det_idx] = True
elif detected: # true positive
tp += 1
assigned[det_idx] = True
for j in range(num_pred):
if not (assigned[j] or pred_flag[j] == -1 or pred_flag[j] == 1 or under_threshold[j]):
fp += 1
return tp, fp, fn
def filter_data(gt_anno, pred_anno, difficulty_mode, difficulty_level, class_name, use_superclass):
"""
Filter data by class name and difficulty
Args:
gt_anno:
pred_anno:
difficulty_mode:
difficulty_level:
class_name:
Returns:
gt_flags/pred_flags:
1 : same class but ignored with different difficulty levels
0 : accepted
-1 : rejected with different classes
"""
num_gt = len(gt_anno['name'])
gt_flag = np.zeros(num_gt, dtype=np.int64)
if use_superclass:
if class_name == 'Vehicle':
reject = np.logical_or(gt_anno['name']=='Pedestrian', gt_anno['name']=='Cyclist')
else:
reject = gt_anno['name'] != class_name
else:
reject = gt_anno['name'] != class_name
gt_flag[reject] = -1
num_pred = len(pred_anno['name'])
pred_flag = np.zeros(num_pred, dtype=np.int64)
if use_superclass:
if class_name == 'Vehicle':
reject = np.logical_or(pred_anno['name']=='Pedestrian', pred_anno['name']=='Cyclist')
else:
reject = pred_anno['name'] != class_name
else:
reject = pred_anno['name'] != class_name
pred_flag[reject] = -1
if difficulty_mode == 'Overall':
ignore = overall_filter(gt_anno['boxes_3d'])
gt_flag[ignore] = 1
ignore = overall_filter(pred_anno['boxes_3d'])
pred_flag[ignore] = 1
elif difficulty_mode == 'Distance':
ignore = distance_filter(gt_anno['boxes_3d'], difficulty_level)
gt_flag[ignore] = 1
ignore = distance_filter(pred_anno['boxes_3d'], difficulty_level)
pred_flag[ignore] = 1
elif difficulty_mode == 'Overall&Distance':
ignore = overall_distance_filter(gt_anno['boxes_3d'], difficulty_level)
gt_flag[ignore] = 1
ignore = overall_distance_filter(pred_anno['boxes_3d'], difficulty_level)
pred_flag[ignore] = 1
else:
raise NotImplementedError
return gt_flag, pred_flag
def iou3d_kernel(gt_boxes, pred_boxes):
"""
Core iou3d computation (with cuda)
Args:
gt_boxes: [N, 7] (x, y, z, w, l, h, rot) in Lidar coordinates
pred_boxes: [M, 7]
Returns:
iou3d: [N, M]
"""
intersection_2d = rotate_iou_gpu_eval(gt_boxes[:, [0, 1, 3, 4, 6]], pred_boxes[:, [0, 1, 3, 4, 6]], criterion=2)
gt_max_h = gt_boxes[:, [2]] + gt_boxes[:, [5]] * 0.5
gt_min_h = gt_boxes[:, [2]] - gt_boxes[:, [5]] * 0.5
pred_max_h = pred_boxes[:, [2]] + pred_boxes[:, [5]] * 0.5
pred_min_h = pred_boxes[:, [2]] - pred_boxes[:, [5]] * 0.5
max_of_min = np.maximum(gt_min_h, pred_min_h.T)
min_of_max = np.minimum(gt_max_h, pred_max_h.T)
inter_h = min_of_max - max_of_min
inter_h[inter_h <= 0] = 0
#inter_h[intersection_2d <= 0] = 0
intersection_3d = intersection_2d * inter_h
gt_vol = gt_boxes[:, [3]] * gt_boxes[:, [4]] * gt_boxes[:, [5]]
pred_vol = pred_boxes[:, [3]] * pred_boxes[:, [4]] * pred_boxes[:, [5]]
union_3d = gt_vol + pred_vol.T - intersection_3d
#eps = 1e-6
#union_3d[union_3d<eps] = eps
iou3d = intersection_3d / union_3d
return iou3d
def iou3d_kernel_with_heading(gt_boxes, pred_boxes):
"""
Core iou3d computation (with cuda)
Args:
gt_boxes: [N, 7] (x, y, z, w, l, h, rot) in Lidar coordinates
pred_boxes: [M, 7]
Returns:
iou3d: [N, M]
"""
intersection_2d = rotate_iou_gpu_eval(gt_boxes[:, [0, 1, 3, 4, 6]], pred_boxes[:, [0, 1, 3, 4, 6]], criterion=2)
gt_max_h = gt_boxes[:, [2]] + gt_boxes[:, [5]] * 0.5
gt_min_h = gt_boxes[:, [2]] - gt_boxes[:, [5]] * 0.5
pred_max_h = pred_boxes[:, [2]] + pred_boxes[:, [5]] * 0.5
pred_min_h = pred_boxes[:, [2]] - pred_boxes[:, [5]] * 0.5
max_of_min = np.maximum(gt_min_h, pred_min_h.T)
min_of_max = np.minimum(gt_max_h, pred_max_h.T)
inter_h = min_of_max - max_of_min
inter_h[inter_h <= 0] = 0
#inter_h[intersection_2d <= 0] = 0
intersection_3d = intersection_2d * inter_h
gt_vol = gt_boxes[:, [3]] * gt_boxes[:, [4]] * gt_boxes[:, [5]]
pred_vol = pred_boxes[:, [3]] * pred_boxes[:, [4]] * pred_boxes[:, [5]]
union_3d = gt_vol + pred_vol.T - intersection_3d
#eps = 1e-6
#union_3d[union_3d<eps] = eps
iou3d = intersection_3d / union_3d
# rotation orientation filtering
diff_rot = gt_boxes[:, [6]] - pred_boxes[:, [6]].T
diff_rot = np.abs(diff_rot)
reverse_diff_rot = 2 * np.pi - diff_rot
diff_rot[diff_rot >= np.pi] = reverse_diff_rot[diff_rot >= np.pi] # constrain to [0-pi]
iou3d[diff_rot > np.pi/2] = 0 # unmatched if diff_rot > 90
return iou3d
def compute_iou3d(gt_annos, pred_annos, split_parts, with_heading):
"""
Compute iou3d of all samples by parts
Args:
with_heading: filter with heading
gt_annos: list of dicts for each sample
pred_annos:
split_parts: for part-based iou computation
Returns:
ious: list of iou arrays for each sample
"""
gt_num_per_sample = np.stack([len(anno["name"]) for anno in gt_annos], 0)
pred_num_per_sample = np.stack([len(anno["name"]) for anno in pred_annos], 0)
ious = []
sample_idx = 0
for num_part_samples in split_parts:
gt_annos_part = gt_annos[sample_idx:sample_idx + num_part_samples]
pred_annos_part = pred_annos[sample_idx:sample_idx + num_part_samples]
gt_boxes = np.concatenate([anno["boxes_3d"] for anno in gt_annos_part], 0)
pred_boxes = np.concatenate([anno["boxes_3d"] for anno in pred_annos_part], 0)
if with_heading:
iou3d_part = iou3d_kernel_with_heading(gt_boxes, pred_boxes)
else:
iou3d_part = iou3d_kernel(gt_boxes, pred_boxes)
gt_num_idx, pred_num_idx = 0, 0
for idx in range(num_part_samples):
gt_box_num = gt_num_per_sample[sample_idx + idx]
pred_box_num = pred_num_per_sample[sample_idx + idx]
ious.append(iou3d_part[gt_num_idx: gt_num_idx + gt_box_num, pred_num_idx: pred_num_idx+pred_box_num])
gt_num_idx += gt_box_num
pred_num_idx += pred_box_num
sample_idx += num_part_samples
return ious