This commit is contained in:
2025-09-21 20:19:11 +08:00
parent a9804cd3bb
commit a1c96ae790

View File

@@ -0,0 +1,125 @@
/*
Stacked-batch-data version of point grouping, modified from the original implementation of official PointNet++ codes.
Written by Shaoshuai Shi
All Rights Reserved 2019-2020.
*/
#include <stdio.h>
#include <stdlib.h>
#include "cuda_utils.h"
#include "group_points_gpu.h"
__global__ void group_points_grad_kernel_stack(int B, int M, int C, int N, int nsample,
const float *grad_out, const int *idx, const int *idx_batch_cnt, const int *features_batch_cnt, float *grad_features) {
// :param grad_out: (M1 + M2 ..., C, nsample) tensor of the gradients of the output from forward
// :param idx: (M1 + M2 ..., nsample) tensor containing the indicies of features to group with
// :param idx_batch_cnt: (batch_size) [M1 + M2 ...] tensor containing the indicies of features to group with
// :param features_batch_cnt: (batch_size) [N1 + N2 ...] tensor containing the indicies of features to group with
// :return:
// grad_features: (N1 + N2 ..., C) gradient of the features
int index = blockIdx.x * blockDim.x + threadIdx.x;
int sample_idx = index % nsample;
int C_idx = (index / nsample) % C;
int pt_idx = (index / nsample / C);
if (pt_idx >= M || C_idx >= C || sample_idx >= nsample) return;
int bs_idx = 0, pt_cnt = idx_batch_cnt[0];
for (int k = 1; k < B; k++){
if (pt_idx < pt_cnt) break;
pt_cnt += idx_batch_cnt[k];
bs_idx = k;
}
int features_batch_start_idx = 0;
for (int k = 0; k < bs_idx; k++) features_batch_start_idx += features_batch_cnt[k];
grad_out += pt_idx * C * nsample + C_idx * nsample + sample_idx;
idx += pt_idx * nsample + sample_idx;
grad_features += (features_batch_start_idx + idx[0]) * C + C_idx;
atomicAdd(grad_features, grad_out[0]);
}
void group_points_grad_kernel_launcher_stack(int B, int M, int C, int N, int nsample,
const float *grad_out, const int *idx, const int *idx_batch_cnt, const int *features_batch_cnt, float *grad_features) {
// :param grad_out: (M1 + M2 ..., C, nsample) tensor of the gradients of the output from forward
// :param idx: (M1 + M2 ..., nsample) tensor containing the indicies of features to group with
// :param idx_batch_cnt: (batch_size) [M1 + M2 ...] tensor containing the indicies of features to group with
// :param features_batch_cnt: (batch_size) [N1 + N2 ...] tensor containing the indicies of features to group with
// :return:
// grad_features: (N1 + N2 ..., C) gradient of the features
cudaError_t err;
// dim3 blocks(DIVUP(npoints * nsample, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
dim3 blocks(DIVUP(M * C * nsample, THREADS_PER_BLOCK)); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
group_points_grad_kernel_stack<<<blocks, threads>>>(B, M, C, N, nsample, grad_out, idx, idx_batch_cnt, features_batch_cnt, grad_features);
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}
__global__ void group_points_kernel_stack(int B, int M, int C, int nsample,
const float *features, const int *features_batch_cnt, const int *idx, const int *idx_batch_cnt, float *out) {
// :param features: (N1 + N2 ..., C) tensor of features to group
// :param features_batch_cnt: (batch_size) [N1 + N2 ...] tensor containing the indicies of features to group with
// :param idx: (M1 + M2 ..., nsample) tensor containing the indicies of features to group with
// :param idx_batch_cnt: (batch_size) [M1 + M2 ...] tensor containing the indicies of features to group with
// :return:
// output: (M1 + M2, C, nsample) tensor
int index = blockIdx.x * blockDim.x + threadIdx.x;
int sample_idx = index % nsample;
int C_idx = (index / nsample) % C;
int pt_idx = (index / nsample / C);
if (pt_idx >= M || C_idx >= C || sample_idx >= nsample) return;
int bs_idx = 0, pt_cnt = idx_batch_cnt[0];
for (int k = 1; k < B; k++){
if (pt_idx < pt_cnt) break;
pt_cnt += idx_batch_cnt[k];
bs_idx = k;
}
int features_batch_start_idx = 0;
for (int k = 0; k < bs_idx; k++) features_batch_start_idx += features_batch_cnt[k];
features += features_batch_start_idx * C;
idx += pt_idx * nsample + sample_idx;
int in_idx = idx[0] * C + C_idx;
int out_idx = pt_idx * C * nsample + C_idx * nsample + sample_idx;
out[out_idx] = features[in_idx];
}
void group_points_kernel_launcher_stack(int B, int M, int C, int nsample,
const float *features, const int *features_batch_cnt, const int *idx, const int *idx_batch_cnt, float *out) {
// :param features: (N1 + N2 ..., C) tensor of features to group
// :param features_batch_cnt: (batch_size) [N1 + N2 ...] tensor containing the indicies of features to group with
// :param idx: (M1 + M2 ..., nsample) tensor containing the indicies of features to group with
// :param idx_batch_cnt: (batch_size) [M1 + M2 ...] tensor containing the indicies of features to group with
// :return:
// output: (M1 + M2, C, nsample) tensor
cudaError_t err;
dim3 blocks(DIVUP(M * C * nsample, THREADS_PER_BLOCK)); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
group_points_kernel_stack<<<blocks, threads>>>(B, M, C, nsample, features, features_batch_cnt, idx, idx_batch_cnt, out);
// cudaDeviceSynchronize(); // for using printf in kernel function
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}