diff --git a/pcdet/ops/iou3d_nms/iou3d_nms_utils.py b/pcdet/ops/iou3d_nms/iou3d_nms_utils.py new file mode 100644 index 0000000..b63ca0d --- /dev/null +++ b/pcdet/ops/iou3d_nms/iou3d_nms_utils.py @@ -0,0 +1,189 @@ +""" +3D IoU Calculation and Rotated NMS +Written by Shaoshuai Shi +All Rights Reserved 2019-2020. +""" +import torch + +from ...utils import common_utils +from . import iou3d_nms_cuda + + +def boxes_bev_iou_cpu(boxes_a, boxes_b): + """ + Args: + boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading] + boxes_b: (M, 7) [x, y, z, dx, dy, dz, heading] + + Returns: + ans_iou: (N, M) + """ + boxes_a, is_numpy = common_utils.check_numpy_to_torch(boxes_a) + boxes_b, is_numpy = common_utils.check_numpy_to_torch(boxes_b) + assert not (boxes_a.is_cuda or boxes_b.is_cuda), 'Only support CPU tensors' + assert boxes_a.shape[1] == 7 and boxes_b.shape[1] == 7 + ans_iou = boxes_a.new_zeros(torch.Size((boxes_a.shape[0], boxes_b.shape[0]))) + iou3d_nms_cuda.boxes_iou_bev_cpu(boxes_a.contiguous(), boxes_b.contiguous(), ans_iou) + + return ans_iou.numpy() if is_numpy else ans_iou + + +def boxes_iou_bev(boxes_a, boxes_b): + """ + Args: + boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading] + boxes_b: (M, 7) [x, y, z, dx, dy, dz, heading] + + Returns: + ans_iou: (N, M) + """ + assert boxes_a.shape[1] == boxes_b.shape[1] == 7 + ans_iou = torch.cuda.FloatTensor(torch.Size((boxes_a.shape[0], boxes_b.shape[0]))).zero_() + + iou3d_nms_cuda.boxes_iou_bev_gpu(boxes_a.contiguous(), boxes_b.contiguous(), ans_iou) + + return ans_iou + + +def boxes_iou3d_gpu(boxes_a, boxes_b): + """ + Args: + boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading] + boxes_b: (M, 7) [x, y, z, dx, dy, dz, heading] + + Returns: + ans_iou: (N, M) + """ + assert boxes_a.shape[1] == boxes_b.shape[1] == 7 + + # height overlap + boxes_a_height_max = (boxes_a[:, 2] + boxes_a[:, 5] / 2).view(-1, 1) + boxes_a_height_min = (boxes_a[:, 2] - boxes_a[:, 5] / 2).view(-1, 1) + boxes_b_height_max = (boxes_b[:, 2] + boxes_b[:, 5] / 2).view(1, -1) + boxes_b_height_min = (boxes_b[:, 2] - boxes_b[:, 5] / 2).view(1, -1) + + # bev overlap + overlaps_bev = torch.cuda.FloatTensor(torch.Size((boxes_a.shape[0], boxes_b.shape[0]))).zero_() # (N, M) + iou3d_nms_cuda.boxes_overlap_bev_gpu(boxes_a.contiguous(), boxes_b.contiguous(), overlaps_bev) + + max_of_min = torch.max(boxes_a_height_min, boxes_b_height_min) + min_of_max = torch.min(boxes_a_height_max, boxes_b_height_max) + overlaps_h = torch.clamp(min_of_max - max_of_min, min=0) + + # 3d iou + overlaps_3d = overlaps_bev * overlaps_h + + vol_a = (boxes_a[:, 3] * boxes_a[:, 4] * boxes_a[:, 5]).view(-1, 1) + vol_b = (boxes_b[:, 3] * boxes_b[:, 4] * boxes_b[:, 5]).view(1, -1) + + iou3d = overlaps_3d / torch.clamp(vol_a + vol_b - overlaps_3d, min=1e-6) + + return iou3d + +def boxes_aligned_iou3d_gpu(boxes_a, boxes_b): + """ + Args: + boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading] + boxes_b: (N, 7) [x, y, z, dx, dy, dz, heading] + + Returns: + ans_iou: (N,) + """ + assert boxes_a.shape[0] == boxes_b.shape[0] + assert boxes_a.shape[1] == boxes_b.shape[1] == 7 + + # height overlap + boxes_a_height_max = (boxes_a[:, 2] + boxes_a[:, 5] / 2).view(-1, 1) + boxes_a_height_min = (boxes_a[:, 2] - boxes_a[:, 5] / 2).view(-1, 1) + boxes_b_height_max = (boxes_b[:, 2] + boxes_b[:, 5] / 2).view(-1, 1) + boxes_b_height_min = (boxes_b[:, 2] - boxes_b[:, 5] / 2).view(-1, 1) + + # bev overlap + overlaps_bev = torch.cuda.FloatTensor(torch.Size((boxes_a.shape[0], 1))).zero_() # (N, M) + iou3d_nms_cuda.boxes_aligned_overlap_bev_gpu(boxes_a.contiguous(), boxes_b.contiguous(), overlaps_bev) + + max_of_min = torch.max(boxes_a_height_min, boxes_b_height_min) + min_of_max = torch.min(boxes_a_height_max, boxes_b_height_max) + overlaps_h = torch.clamp(min_of_max - max_of_min, min=0) + + # 3d iou + overlaps_3d = overlaps_bev * overlaps_h + + vol_a = (boxes_a[:, 3] * boxes_a[:, 4] * boxes_a[:, 5]).view(-1, 1) + vol_b = (boxes_b[:, 3] * boxes_b[:, 4] * boxes_b[:, 5]).view(-1, 1) + + iou3d = overlaps_3d / torch.clamp(vol_a + vol_b - overlaps_3d, min=1e-6) + + return iou3d + + +def nms_gpu(boxes, scores, thresh, pre_maxsize=None, **kwargs): + """ + :param boxes: (N, 7) [x, y, z, dx, dy, dz, heading] + :param scores: (N) + :param thresh: + :return: + """ + assert boxes.shape[1] == 7 + order = scores.sort(0, descending=True)[1] + if pre_maxsize is not None: + order = order[:pre_maxsize] + + boxes = boxes[order].contiguous() + keep = torch.LongTensor(boxes.size(0)) + num_out = iou3d_nms_cuda.nms_gpu(boxes, keep, thresh) + return order[keep[:num_out].cuda()].contiguous(), None + + +def nms_normal_gpu(boxes, scores, thresh, **kwargs): + """ + :param boxes: (N, 7) [x, y, z, dx, dy, dz, heading] + :param scores: (N) + :param thresh: + :return: + """ + assert boxes.shape[1] == 7 + order = scores.sort(0, descending=True)[1] + + boxes = boxes[order].contiguous() + + keep = torch.LongTensor(boxes.size(0)) + num_out = iou3d_nms_cuda.nms_normal_gpu(boxes, keep, thresh) + return order[keep[:num_out].cuda()].contiguous(), None + + +def paired_boxes_iou3d_gpu(boxes_a, boxes_b): + """ + Args: + boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading] + boxes_b: (N, 7) [x, y, z, dx, dy, dz, heading] + + Returns: + ans_iou: (N) + """ + assert boxes_a.shape[0] == boxes_b.shape[0] + assert boxes_a.shape[1] == boxes_b.shape[1] == 7 + + # height overlap + boxes_a_height_max = (boxes_a[:, 2] + boxes_a[:, 5] / 2).view(-1, 1) + boxes_a_height_min = (boxes_a[:, 2] - boxes_a[:, 5] / 2).view(-1, 1) + boxes_b_height_max = (boxes_b[:, 2] + boxes_b[:, 5] / 2).view(-1, 1) + boxes_b_height_min = (boxes_b[:, 2] - boxes_b[:, 5] / 2).view(-1, 1) + + # bev overlap + overlaps_bev = torch.cuda.FloatTensor(torch.Size((boxes_a.shape[0], 1))).zero_() # (N, ``) + iou3d_nms_cuda.paired_boxes_overlap_bev_gpu(boxes_a.contiguous(), boxes_b.contiguous(), overlaps_bev) + + max_of_min = torch.max(boxes_a_height_min, boxes_b_height_min) + min_of_max = torch.min(boxes_a_height_max, boxes_b_height_max) + overlaps_h = torch.clamp(min_of_max - max_of_min, min=0) + + # 3d iou + overlaps_3d = overlaps_bev * overlaps_h + + vol_a = (boxes_a[:, 3] * boxes_a[:, 4] * boxes_a[:, 5]).view(-1, 1) + vol_b = (boxes_b[:, 3] * boxes_b[:, 4] * boxes_b[:, 5]).view(-1, 1) + + iou3d = overlaps_3d / torch.clamp(vol_a + vol_b - overlaps_3d, min=1e-6) + + return iou3d.view(-1) \ No newline at end of file