Add File
This commit is contained in:
303
pcdet/datasets/lyft/lyft_dataset.py
Normal file
303
pcdet/datasets/lyft/lyft_dataset.py
Normal file
@@ -0,0 +1,303 @@
|
||||
import copy
|
||||
import pickle
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
|
||||
from ...ops.roiaware_pool3d import roiaware_pool3d_utils
|
||||
from ...utils import common_utils, box_utils
|
||||
from ..dataset import DatasetTemplate
|
||||
|
||||
|
||||
class LyftDataset(DatasetTemplate):
|
||||
def __init__(self, dataset_cfg, class_names, training=True, root_path=None, logger=None):
|
||||
self.root_path = (root_path if root_path is not None else Path(dataset_cfg.DATA_PATH)) / dataset_cfg.VERSION
|
||||
super().__init__(
|
||||
dataset_cfg=dataset_cfg, class_names=class_names, training=training, root_path=self.root_path, logger=logger
|
||||
)
|
||||
self.infos = []
|
||||
self.include_lyft_data(self.mode)
|
||||
|
||||
def include_lyft_data(self, mode):
|
||||
self.logger.info('Loading lyft dataset')
|
||||
lyft_infos = []
|
||||
|
||||
for info_path in self.dataset_cfg.INFO_PATH[mode]:
|
||||
info_path = self.root_path / info_path
|
||||
if not info_path.exists():
|
||||
continue
|
||||
with open(info_path, 'rb') as f:
|
||||
infos = pickle.load(f)
|
||||
lyft_infos.extend(infos)
|
||||
|
||||
self.infos.extend(lyft_infos)
|
||||
self.logger.info('Total samples for lyft dataset: %d' % (len(lyft_infos)))
|
||||
|
||||
@staticmethod
|
||||
def remove_ego_points(points, center_radius=1.0):
|
||||
mask = ~((np.abs(points[:, 0]) < center_radius*1.5) & (np.abs(points[:, 1]) < center_radius))
|
||||
return points[mask]
|
||||
|
||||
def get_sweep(self, sweep_info):
|
||||
lidar_path = self.root_path / sweep_info['lidar_path']
|
||||
points_sweep = np.fromfile(str(lidar_path), dtype=np.float32, count=-1)
|
||||
if points_sweep.shape[0] % 5 != 0:
|
||||
points_sweep = points_sweep[: points_sweep.shape[0] - (points_sweep.shape[0] % 5)]
|
||||
points_sweep = points_sweep.reshape([-1, 5])[:, :4]
|
||||
|
||||
points_sweep = self.remove_ego_points(points_sweep).T
|
||||
if sweep_info['transform_matrix'] is not None:
|
||||
num_points = points_sweep.shape[1]
|
||||
points_sweep[:3, :] = sweep_info['transform_matrix'].dot(
|
||||
np.vstack((points_sweep[:3, :], np.ones(num_points))))[:3, :]
|
||||
|
||||
cur_times = sweep_info['time_lag'] * np.ones((1, points_sweep.shape[1]))
|
||||
return points_sweep.T, cur_times.T
|
||||
|
||||
def get_lidar_with_sweeps(self, index, max_sweeps=1):
|
||||
info = self.infos[index]
|
||||
lidar_path = self.root_path / info['lidar_path']
|
||||
points = np.fromfile(str(lidar_path), dtype=np.float32, count=-1)
|
||||
if points.shape[0] % 5 != 0:
|
||||
points = points[: points.shape[0] - (points.shape[0] % 5)]
|
||||
points = points.reshape([-1, 5])[:, :4]
|
||||
|
||||
sweep_points_list = [points]
|
||||
sweep_times_list = [np.zeros((points.shape[0], 1))]
|
||||
|
||||
for k in np.random.choice(len(info['sweeps']), max_sweeps - 1, replace=False):
|
||||
points_sweep, times_sweep = self.get_sweep(info['sweeps'][k])
|
||||
sweep_points_list.append(points_sweep)
|
||||
sweep_times_list.append(times_sweep)
|
||||
|
||||
points = np.concatenate(sweep_points_list, axis=0)
|
||||
times = np.concatenate(sweep_times_list, axis=0).astype(points.dtype)
|
||||
|
||||
points = np.concatenate((points, times), axis=1)
|
||||
return points
|
||||
|
||||
def __len__(self):
|
||||
if self._merge_all_iters_to_one_epoch:
|
||||
return len(self.infos) * self.total_epochs
|
||||
|
||||
return len(self.infos)
|
||||
|
||||
def __getitem__(self, index):
|
||||
if self._merge_all_iters_to_one_epoch:
|
||||
index = index % len(self.infos)
|
||||
|
||||
info = copy.deepcopy(self.infos[index])
|
||||
points = self.get_lidar_with_sweeps(index, max_sweeps=self.dataset_cfg.MAX_SWEEPS)
|
||||
|
||||
input_dict = {
|
||||
'points': points,
|
||||
'frame_id': Path(info['lidar_path']).stem,
|
||||
'metadata': {'token': info['token']}
|
||||
}
|
||||
|
||||
if 'gt_boxes' in info:
|
||||
input_dict.update({
|
||||
'gt_boxes': info['gt_boxes'],
|
||||
'gt_names': info['gt_names']
|
||||
})
|
||||
|
||||
data_dict = self.prepare_data(data_dict=input_dict)
|
||||
|
||||
return data_dict
|
||||
|
||||
def kitti_eval(self, eval_det_annos, eval_gt_annos, class_names):
|
||||
from ..kitti.kitti_object_eval_python import eval as kitti_eval
|
||||
from ..kitti import kitti_utils
|
||||
|
||||
map_name_to_kitti = {
|
||||
'car': 'Car',
|
||||
'pedestrian': 'Pedestrian',
|
||||
'truck': 'Truck',
|
||||
'bicycle': 'Cyclist',
|
||||
'motorcycle': 'Cyclist'
|
||||
}
|
||||
|
||||
kitti_utils.transform_to_kitti_format(eval_det_annos, map_name_to_kitti=map_name_to_kitti)
|
||||
kitti_utils.transform_to_kitti_format(
|
||||
eval_gt_annos, map_name_to_kitti=map_name_to_kitti,
|
||||
info_with_fakelidar=self.dataset_cfg.get('INFO_WITH_FAKELIDAR', False)
|
||||
)
|
||||
|
||||
kitti_class_names = [map_name_to_kitti[x] for x in class_names]
|
||||
|
||||
ap_result_str, ap_dict = kitti_eval.get_official_eval_result(
|
||||
gt_annos=eval_gt_annos, dt_annos=eval_det_annos, current_classes=kitti_class_names
|
||||
)
|
||||
return ap_result_str, ap_dict
|
||||
|
||||
def evaluation(self, det_annos, class_names, **kwargs):
|
||||
if kwargs['eval_metric'] == 'kitti':
|
||||
eval_det_annos = copy.deepcopy(det_annos)
|
||||
eval_gt_annos = copy.deepcopy(self.infos)
|
||||
return self.kitti_eval(eval_det_annos, eval_gt_annos, class_names)
|
||||
elif kwargs['eval_metric'] == 'lyft':
|
||||
return self.lyft_eval(det_annos, class_names,
|
||||
iou_thresholds=self.dataset_cfg.EVAL_LYFT_IOU_LIST)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
def lyft_eval(self, det_annos, class_names, iou_thresholds=[0.5]):
|
||||
from lyft_dataset_sdk.lyftdataset import LyftDataset as Lyft
|
||||
from . import lyft_utils
|
||||
# from lyft_dataset_sdk.eval.detection.mAP_evaluation import get_average_precisions
|
||||
from .lyft_mAP_eval.lyft_eval import get_average_precisions
|
||||
|
||||
lyft = Lyft(json_path=self.root_path / 'data', data_path=self.root_path, verbose=True)
|
||||
|
||||
det_lyft_boxes, sample_tokens = lyft_utils.convert_det_to_lyft_format(lyft, det_annos)
|
||||
gt_lyft_boxes = lyft_utils.load_lyft_gt_by_tokens(lyft, sample_tokens)
|
||||
|
||||
average_precisions = get_average_precisions(gt_lyft_boxes, det_lyft_boxes, class_names, iou_thresholds)
|
||||
|
||||
ap_result_str, ap_dict = lyft_utils.format_lyft_results(average_precisions, class_names, iou_thresholds, version=self.dataset_cfg.VERSION)
|
||||
|
||||
return ap_result_str, ap_dict
|
||||
|
||||
def create_groundtruth_database(self, used_classes=None, max_sweeps=10):
|
||||
import torch
|
||||
|
||||
database_save_path = self.root_path / f'gt_database'
|
||||
db_info_save_path = self.root_path / f'lyft_dbinfos_{max_sweeps}sweeps.pkl'
|
||||
|
||||
database_save_path.mkdir(parents=True, exist_ok=True)
|
||||
all_db_infos = {}
|
||||
|
||||
for idx in tqdm(range(len(self.infos))):
|
||||
sample_idx = idx
|
||||
info = self.infos[idx]
|
||||
points = self.get_lidar_with_sweeps(idx, max_sweeps=max_sweeps)
|
||||
gt_boxes = info['gt_boxes']
|
||||
gt_names = info['gt_names']
|
||||
|
||||
box_idxs_of_pts = roiaware_pool3d_utils.points_in_boxes_gpu(
|
||||
torch.from_numpy(points[:, 0:3]).unsqueeze(dim=0).float().cuda(),
|
||||
torch.from_numpy(gt_boxes[:, 0:7]).unsqueeze(dim=0).float().cuda()
|
||||
).long().squeeze(dim=0).cpu().numpy()
|
||||
|
||||
for i in range(gt_boxes.shape[0]):
|
||||
filename = '%s_%s_%d.bin' % (sample_idx, gt_names[i], i)
|
||||
filepath = database_save_path / filename
|
||||
gt_points = points[box_idxs_of_pts == i]
|
||||
|
||||
gt_points[:, :3] -= gt_boxes[i, :3]
|
||||
with open(filepath, 'w') as f:
|
||||
gt_points.tofile(f)
|
||||
|
||||
if (used_classes is None) or gt_names[i] in used_classes:
|
||||
db_path = str(filepath.relative_to(self.root_path)) # gt_database/xxxxx.bin
|
||||
db_info = {'name': gt_names[i], 'path': db_path, 'image_idx': sample_idx, 'gt_idx': i,
|
||||
'box3d_lidar': gt_boxes[i], 'num_points_in_gt': gt_points.shape[0]}
|
||||
if gt_names[i] in all_db_infos:
|
||||
all_db_infos[gt_names[i]].append(db_info)
|
||||
else:
|
||||
all_db_infos[gt_names[i]] = [db_info]
|
||||
for k, v in all_db_infos.items():
|
||||
print('Database %s: %d' % (k, len(v)))
|
||||
|
||||
with open(db_info_save_path, 'wb') as f:
|
||||
pickle.dump(all_db_infos, f)
|
||||
|
||||
|
||||
def create_lyft_info(version, data_path, save_path, split, max_sweeps=10):
|
||||
from lyft_dataset_sdk.lyftdataset import LyftDataset
|
||||
from . import lyft_utils
|
||||
data_path = data_path / version
|
||||
save_path = save_path / version
|
||||
split_path = data_path.parent / 'ImageSets'
|
||||
|
||||
if split is not None:
|
||||
save_path = save_path / split
|
||||
split_path = split_path / split
|
||||
|
||||
save_path.mkdir(exist_ok=True)
|
||||
|
||||
assert version in ['trainval', 'one_scene', 'test']
|
||||
|
||||
if version == 'trainval':
|
||||
train_split_path = split_path / 'train.txt'
|
||||
val_split_path = split_path / 'val.txt'
|
||||
elif version == 'test':
|
||||
train_split_path = split_path / 'test.txt'
|
||||
val_split_path = None
|
||||
elif version == 'one_scene':
|
||||
train_split_path = split_path / 'one_scene.txt'
|
||||
val_split_path = split_path / 'one_scene.txt'
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
train_scenes = [x.strip() for x in open(train_split_path).readlines()] if train_split_path.exists() else []
|
||||
val_scenes = [x.strip() for x in open(val_split_path).readlines()] if val_split_path is not None and val_split_path.exists() else []
|
||||
|
||||
lyft = LyftDataset(json_path=data_path / 'data', data_path=data_path, verbose=True)
|
||||
|
||||
available_scenes = lyft_utils.get_available_scenes(lyft)
|
||||
available_scene_names = [s['name'] for s in available_scenes]
|
||||
train_scenes = list(filter(lambda x: x in available_scene_names, train_scenes))
|
||||
val_scenes = list(filter(lambda x: x in available_scene_names, val_scenes))
|
||||
train_scenes = set([available_scenes[available_scene_names.index(s)]['token'] for s in train_scenes])
|
||||
val_scenes = set([available_scenes[available_scene_names.index(s)]['token'] for s in val_scenes])
|
||||
|
||||
print('%s: train scene(%d), val scene(%d)' % (version, len(train_scenes), len(val_scenes)))
|
||||
|
||||
train_lyft_infos, val_lyft_infos = lyft_utils.fill_trainval_infos(
|
||||
data_path=data_path, lyft=lyft, train_scenes=train_scenes, val_scenes=val_scenes,
|
||||
test='test' in version, max_sweeps=max_sweeps
|
||||
)
|
||||
|
||||
if version == 'test':
|
||||
print('test sample: %d' % len(train_lyft_infos))
|
||||
with open(save_path / f'lyft_infos_test.pkl', 'wb') as f:
|
||||
pickle.dump(train_lyft_infos, f)
|
||||
else:
|
||||
print('train sample: %d, val sample: %d' % (len(train_lyft_infos), len(val_lyft_infos)))
|
||||
with open(save_path / f'lyft_infos_train.pkl', 'wb') as f:
|
||||
pickle.dump(train_lyft_infos, f)
|
||||
with open(save_path / f'lyft_infos_val.pkl', 'wb') as f:
|
||||
pickle.dump(val_lyft_infos, f)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import yaml
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
from easydict import EasyDict
|
||||
|
||||
parser = argparse.ArgumentParser(description='arg parser')
|
||||
parser.add_argument('--cfg_file', type=str, default=None, help='specify the config of dataset')
|
||||
parser.add_argument('--func', type=str, default='create_lyft_infos', help='')
|
||||
parser.add_argument('--version', type=str, default='trainval', help='')
|
||||
parser.add_argument('--split', type=str, default=None, help='')
|
||||
parser.add_argument('--max_sweeps', type=int, default=10, help='')
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.func == 'create_lyft_infos':
|
||||
try:
|
||||
yaml_config = yaml.safe_load(open(args.cfg_file), Loader=yaml.FullLoader)
|
||||
except:
|
||||
yaml_config = yaml.safe_load(open(args.cfg_file))
|
||||
dataset_cfg = EasyDict(yaml_config)
|
||||
ROOT_DIR = (Path(__file__).resolve().parent / '../../../').resolve()
|
||||
dataset_cfg.VERSION = args.version
|
||||
dataset_cfg.MAX_SWEEPS = args.max_sweeps
|
||||
create_lyft_info(
|
||||
version=dataset_cfg.VERSION,
|
||||
data_path=ROOT_DIR / 'data' / 'lyft',
|
||||
save_path=ROOT_DIR / 'data' / 'lyft',
|
||||
split=args.split,
|
||||
max_sweeps=dataset_cfg.MAX_SWEEPS
|
||||
)
|
||||
|
||||
lyft_dataset = LyftDataset(
|
||||
dataset_cfg=dataset_cfg, class_names=None,
|
||||
root_path=ROOT_DIR / 'data' / 'lyft',
|
||||
logger=common_utils.create_logger(), training=True
|
||||
)
|
||||
|
||||
if args.version != 'test':
|
||||
lyft_dataset.create_groundtruth_database(max_sweeps=dataset_cfg.MAX_SWEEPS)
|
||||
Reference in New Issue
Block a user