This commit is contained in:
2025-09-21 20:18:34 +08:00
parent e2c7bde8cc
commit bb9c1941f8

View File

@@ -0,0 +1,303 @@
import copy
import pickle
from pathlib import Path
import numpy as np
from tqdm import tqdm
from ...ops.roiaware_pool3d import roiaware_pool3d_utils
from ...utils import common_utils, box_utils
from ..dataset import DatasetTemplate
class LyftDataset(DatasetTemplate):
def __init__(self, dataset_cfg, class_names, training=True, root_path=None, logger=None):
self.root_path = (root_path if root_path is not None else Path(dataset_cfg.DATA_PATH)) / dataset_cfg.VERSION
super().__init__(
dataset_cfg=dataset_cfg, class_names=class_names, training=training, root_path=self.root_path, logger=logger
)
self.infos = []
self.include_lyft_data(self.mode)
def include_lyft_data(self, mode):
self.logger.info('Loading lyft dataset')
lyft_infos = []
for info_path in self.dataset_cfg.INFO_PATH[mode]:
info_path = self.root_path / info_path
if not info_path.exists():
continue
with open(info_path, 'rb') as f:
infos = pickle.load(f)
lyft_infos.extend(infos)
self.infos.extend(lyft_infos)
self.logger.info('Total samples for lyft dataset: %d' % (len(lyft_infos)))
@staticmethod
def remove_ego_points(points, center_radius=1.0):
mask = ~((np.abs(points[:, 0]) < center_radius*1.5) & (np.abs(points[:, 1]) < center_radius))
return points[mask]
def get_sweep(self, sweep_info):
lidar_path = self.root_path / sweep_info['lidar_path']
points_sweep = np.fromfile(str(lidar_path), dtype=np.float32, count=-1)
if points_sweep.shape[0] % 5 != 0:
points_sweep = points_sweep[: points_sweep.shape[0] - (points_sweep.shape[0] % 5)]
points_sweep = points_sweep.reshape([-1, 5])[:, :4]
points_sweep = self.remove_ego_points(points_sweep).T
if sweep_info['transform_matrix'] is not None:
num_points = points_sweep.shape[1]
points_sweep[:3, :] = sweep_info['transform_matrix'].dot(
np.vstack((points_sweep[:3, :], np.ones(num_points))))[:3, :]
cur_times = sweep_info['time_lag'] * np.ones((1, points_sweep.shape[1]))
return points_sweep.T, cur_times.T
def get_lidar_with_sweeps(self, index, max_sweeps=1):
info = self.infos[index]
lidar_path = self.root_path / info['lidar_path']
points = np.fromfile(str(lidar_path), dtype=np.float32, count=-1)
if points.shape[0] % 5 != 0:
points = points[: points.shape[0] - (points.shape[0] % 5)]
points = points.reshape([-1, 5])[:, :4]
sweep_points_list = [points]
sweep_times_list = [np.zeros((points.shape[0], 1))]
for k in np.random.choice(len(info['sweeps']), max_sweeps - 1, replace=False):
points_sweep, times_sweep = self.get_sweep(info['sweeps'][k])
sweep_points_list.append(points_sweep)
sweep_times_list.append(times_sweep)
points = np.concatenate(sweep_points_list, axis=0)
times = np.concatenate(sweep_times_list, axis=0).astype(points.dtype)
points = np.concatenate((points, times), axis=1)
return points
def __len__(self):
if self._merge_all_iters_to_one_epoch:
return len(self.infos) * self.total_epochs
return len(self.infos)
def __getitem__(self, index):
if self._merge_all_iters_to_one_epoch:
index = index % len(self.infos)
info = copy.deepcopy(self.infos[index])
points = self.get_lidar_with_sweeps(index, max_sweeps=self.dataset_cfg.MAX_SWEEPS)
input_dict = {
'points': points,
'frame_id': Path(info['lidar_path']).stem,
'metadata': {'token': info['token']}
}
if 'gt_boxes' in info:
input_dict.update({
'gt_boxes': info['gt_boxes'],
'gt_names': info['gt_names']
})
data_dict = self.prepare_data(data_dict=input_dict)
return data_dict
def kitti_eval(self, eval_det_annos, eval_gt_annos, class_names):
from ..kitti.kitti_object_eval_python import eval as kitti_eval
from ..kitti import kitti_utils
map_name_to_kitti = {
'car': 'Car',
'pedestrian': 'Pedestrian',
'truck': 'Truck',
'bicycle': 'Cyclist',
'motorcycle': 'Cyclist'
}
kitti_utils.transform_to_kitti_format(eval_det_annos, map_name_to_kitti=map_name_to_kitti)
kitti_utils.transform_to_kitti_format(
eval_gt_annos, map_name_to_kitti=map_name_to_kitti,
info_with_fakelidar=self.dataset_cfg.get('INFO_WITH_FAKELIDAR', False)
)
kitti_class_names = [map_name_to_kitti[x] for x in class_names]
ap_result_str, ap_dict = kitti_eval.get_official_eval_result(
gt_annos=eval_gt_annos, dt_annos=eval_det_annos, current_classes=kitti_class_names
)
return ap_result_str, ap_dict
def evaluation(self, det_annos, class_names, **kwargs):
if kwargs['eval_metric'] == 'kitti':
eval_det_annos = copy.deepcopy(det_annos)
eval_gt_annos = copy.deepcopy(self.infos)
return self.kitti_eval(eval_det_annos, eval_gt_annos, class_names)
elif kwargs['eval_metric'] == 'lyft':
return self.lyft_eval(det_annos, class_names,
iou_thresholds=self.dataset_cfg.EVAL_LYFT_IOU_LIST)
else:
raise NotImplementedError
def lyft_eval(self, det_annos, class_names, iou_thresholds=[0.5]):
from lyft_dataset_sdk.lyftdataset import LyftDataset as Lyft
from . import lyft_utils
# from lyft_dataset_sdk.eval.detection.mAP_evaluation import get_average_precisions
from .lyft_mAP_eval.lyft_eval import get_average_precisions
lyft = Lyft(json_path=self.root_path / 'data', data_path=self.root_path, verbose=True)
det_lyft_boxes, sample_tokens = lyft_utils.convert_det_to_lyft_format(lyft, det_annos)
gt_lyft_boxes = lyft_utils.load_lyft_gt_by_tokens(lyft, sample_tokens)
average_precisions = get_average_precisions(gt_lyft_boxes, det_lyft_boxes, class_names, iou_thresholds)
ap_result_str, ap_dict = lyft_utils.format_lyft_results(average_precisions, class_names, iou_thresholds, version=self.dataset_cfg.VERSION)
return ap_result_str, ap_dict
def create_groundtruth_database(self, used_classes=None, max_sweeps=10):
import torch
database_save_path = self.root_path / f'gt_database'
db_info_save_path = self.root_path / f'lyft_dbinfos_{max_sweeps}sweeps.pkl'
database_save_path.mkdir(parents=True, exist_ok=True)
all_db_infos = {}
for idx in tqdm(range(len(self.infos))):
sample_idx = idx
info = self.infos[idx]
points = self.get_lidar_with_sweeps(idx, max_sweeps=max_sweeps)
gt_boxes = info['gt_boxes']
gt_names = info['gt_names']
box_idxs_of_pts = roiaware_pool3d_utils.points_in_boxes_gpu(
torch.from_numpy(points[:, 0:3]).unsqueeze(dim=0).float().cuda(),
torch.from_numpy(gt_boxes[:, 0:7]).unsqueeze(dim=0).float().cuda()
).long().squeeze(dim=0).cpu().numpy()
for i in range(gt_boxes.shape[0]):
filename = '%s_%s_%d.bin' % (sample_idx, gt_names[i], i)
filepath = database_save_path / filename
gt_points = points[box_idxs_of_pts == i]
gt_points[:, :3] -= gt_boxes[i, :3]
with open(filepath, 'w') as f:
gt_points.tofile(f)
if (used_classes is None) or gt_names[i] in used_classes:
db_path = str(filepath.relative_to(self.root_path)) # gt_database/xxxxx.bin
db_info = {'name': gt_names[i], 'path': db_path, 'image_idx': sample_idx, 'gt_idx': i,
'box3d_lidar': gt_boxes[i], 'num_points_in_gt': gt_points.shape[0]}
if gt_names[i] in all_db_infos:
all_db_infos[gt_names[i]].append(db_info)
else:
all_db_infos[gt_names[i]] = [db_info]
for k, v in all_db_infos.items():
print('Database %s: %d' % (k, len(v)))
with open(db_info_save_path, 'wb') as f:
pickle.dump(all_db_infos, f)
def create_lyft_info(version, data_path, save_path, split, max_sweeps=10):
from lyft_dataset_sdk.lyftdataset import LyftDataset
from . import lyft_utils
data_path = data_path / version
save_path = save_path / version
split_path = data_path.parent / 'ImageSets'
if split is not None:
save_path = save_path / split
split_path = split_path / split
save_path.mkdir(exist_ok=True)
assert version in ['trainval', 'one_scene', 'test']
if version == 'trainval':
train_split_path = split_path / 'train.txt'
val_split_path = split_path / 'val.txt'
elif version == 'test':
train_split_path = split_path / 'test.txt'
val_split_path = None
elif version == 'one_scene':
train_split_path = split_path / 'one_scene.txt'
val_split_path = split_path / 'one_scene.txt'
else:
raise NotImplementedError
train_scenes = [x.strip() for x in open(train_split_path).readlines()] if train_split_path.exists() else []
val_scenes = [x.strip() for x in open(val_split_path).readlines()] if val_split_path is not None and val_split_path.exists() else []
lyft = LyftDataset(json_path=data_path / 'data', data_path=data_path, verbose=True)
available_scenes = lyft_utils.get_available_scenes(lyft)
available_scene_names = [s['name'] for s in available_scenes]
train_scenes = list(filter(lambda x: x in available_scene_names, train_scenes))
val_scenes = list(filter(lambda x: x in available_scene_names, val_scenes))
train_scenes = set([available_scenes[available_scene_names.index(s)]['token'] for s in train_scenes])
val_scenes = set([available_scenes[available_scene_names.index(s)]['token'] for s in val_scenes])
print('%s: train scene(%d), val scene(%d)' % (version, len(train_scenes), len(val_scenes)))
train_lyft_infos, val_lyft_infos = lyft_utils.fill_trainval_infos(
data_path=data_path, lyft=lyft, train_scenes=train_scenes, val_scenes=val_scenes,
test='test' in version, max_sweeps=max_sweeps
)
if version == 'test':
print('test sample: %d' % len(train_lyft_infos))
with open(save_path / f'lyft_infos_test.pkl', 'wb') as f:
pickle.dump(train_lyft_infos, f)
else:
print('train sample: %d, val sample: %d' % (len(train_lyft_infos), len(val_lyft_infos)))
with open(save_path / f'lyft_infos_train.pkl', 'wb') as f:
pickle.dump(train_lyft_infos, f)
with open(save_path / f'lyft_infos_val.pkl', 'wb') as f:
pickle.dump(val_lyft_infos, f)
if __name__ == '__main__':
import yaml
import argparse
from pathlib import Path
from easydict import EasyDict
parser = argparse.ArgumentParser(description='arg parser')
parser.add_argument('--cfg_file', type=str, default=None, help='specify the config of dataset')
parser.add_argument('--func', type=str, default='create_lyft_infos', help='')
parser.add_argument('--version', type=str, default='trainval', help='')
parser.add_argument('--split', type=str, default=None, help='')
parser.add_argument('--max_sweeps', type=int, default=10, help='')
args = parser.parse_args()
if args.func == 'create_lyft_infos':
try:
yaml_config = yaml.safe_load(open(args.cfg_file), Loader=yaml.FullLoader)
except:
yaml_config = yaml.safe_load(open(args.cfg_file))
dataset_cfg = EasyDict(yaml_config)
ROOT_DIR = (Path(__file__).resolve().parent / '../../../').resolve()
dataset_cfg.VERSION = args.version
dataset_cfg.MAX_SWEEPS = args.max_sweeps
create_lyft_info(
version=dataset_cfg.VERSION,
data_path=ROOT_DIR / 'data' / 'lyft',
save_path=ROOT_DIR / 'data' / 'lyft',
split=args.split,
max_sweeps=dataset_cfg.MAX_SWEEPS
)
lyft_dataset = LyftDataset(
dataset_cfg=dataset_cfg, class_names=None,
root_path=ROOT_DIR / 'data' / 'lyft',
logger=common_utils.create_logger(), training=True
)
if args.version != 'test':
lyft_dataset.create_groundtruth_database(max_sweeps=dataset_cfg.MAX_SWEEPS)