Add File
This commit is contained in:
83
pcdet/datasets/__init__.py
Normal file
83
pcdet/datasets/__init__.py
Normal file
@@ -0,0 +1,83 @@
|
|||||||
|
import torch
|
||||||
|
from functools import partial
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from torch.utils.data import DistributedSampler as _DistributedSampler
|
||||||
|
|
||||||
|
from pcdet.utils import common_utils
|
||||||
|
|
||||||
|
from .dataset import DatasetTemplate
|
||||||
|
from .kitti.kitti_dataset import KittiDataset
|
||||||
|
from .nuscenes.nuscenes_dataset import NuScenesDataset
|
||||||
|
from .waymo.waymo_dataset import WaymoDataset
|
||||||
|
from .pandaset.pandaset_dataset import PandasetDataset
|
||||||
|
from .lyft.lyft_dataset import LyftDataset
|
||||||
|
from .once.once_dataset import ONCEDataset
|
||||||
|
from .argo2.argo2_dataset import Argo2Dataset
|
||||||
|
from .custom.custom_dataset import CustomDataset
|
||||||
|
|
||||||
|
__all__ = {
|
||||||
|
'DatasetTemplate': DatasetTemplate,
|
||||||
|
'KittiDataset': KittiDataset,
|
||||||
|
'NuScenesDataset': NuScenesDataset,
|
||||||
|
'WaymoDataset': WaymoDataset,
|
||||||
|
'PandasetDataset': PandasetDataset,
|
||||||
|
'LyftDataset': LyftDataset,
|
||||||
|
'ONCEDataset': ONCEDataset,
|
||||||
|
'CustomDataset': CustomDataset,
|
||||||
|
'Argo2Dataset': Argo2Dataset
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class DistributedSampler(_DistributedSampler):
|
||||||
|
|
||||||
|
def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True):
|
||||||
|
super().__init__(dataset, num_replicas=num_replicas, rank=rank)
|
||||||
|
self.shuffle = shuffle
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
if self.shuffle:
|
||||||
|
g = torch.Generator()
|
||||||
|
g.manual_seed(self.epoch)
|
||||||
|
indices = torch.randperm(len(self.dataset), generator=g).tolist()
|
||||||
|
else:
|
||||||
|
indices = torch.arange(len(self.dataset)).tolist()
|
||||||
|
|
||||||
|
indices += indices[:(self.total_size - len(indices))]
|
||||||
|
assert len(indices) == self.total_size
|
||||||
|
|
||||||
|
indices = indices[self.rank:self.total_size:self.num_replicas]
|
||||||
|
assert len(indices) == self.num_samples
|
||||||
|
|
||||||
|
return iter(indices)
|
||||||
|
|
||||||
|
|
||||||
|
def build_dataloader(dataset_cfg, class_names, batch_size, dist, root_path=None, workers=4, seed=None,
|
||||||
|
logger=None, training=True, merge_all_iters_to_one_epoch=False, total_epochs=0):
|
||||||
|
|
||||||
|
dataset = __all__[dataset_cfg.DATASET](
|
||||||
|
dataset_cfg=dataset_cfg,
|
||||||
|
class_names=class_names,
|
||||||
|
root_path=root_path,
|
||||||
|
training=training,
|
||||||
|
logger=logger,
|
||||||
|
)
|
||||||
|
|
||||||
|
if merge_all_iters_to_one_epoch:
|
||||||
|
assert hasattr(dataset, 'merge_all_iters_to_one_epoch')
|
||||||
|
dataset.merge_all_iters_to_one_epoch(merge=True, epochs=total_epochs)
|
||||||
|
|
||||||
|
if dist:
|
||||||
|
if training:
|
||||||
|
sampler = torch.utils.data.distributed.DistributedSampler(dataset)
|
||||||
|
else:
|
||||||
|
rank, world_size = common_utils.get_dist_info()
|
||||||
|
sampler = DistributedSampler(dataset, world_size, rank, shuffle=False)
|
||||||
|
else:
|
||||||
|
sampler = None
|
||||||
|
dataloader = DataLoader(
|
||||||
|
dataset, batch_size=batch_size, pin_memory=True, num_workers=workers,
|
||||||
|
shuffle=(sampler is None) and training, collate_fn=dataset.collate_batch,
|
||||||
|
drop_last=False, sampler=sampler, timeout=0, worker_init_fn=partial(common_utils.worker_init_fn, seed=seed)
|
||||||
|
)
|
||||||
|
|
||||||
|
return dataset, dataloader, sampler
|
||||||
Reference in New Issue
Block a user