Add File
This commit is contained in:
75
pcdet/models/dense_heads/anchor_head_single.py
Normal file
75
pcdet/models/dense_heads/anchor_head_single.py
Normal file
@@ -0,0 +1,75 @@
|
||||
import numpy as np
|
||||
import torch.nn as nn
|
||||
|
||||
from .anchor_head_template import AnchorHeadTemplate
|
||||
|
||||
|
||||
class AnchorHeadSingle(AnchorHeadTemplate):
|
||||
def __init__(self, model_cfg, input_channels, num_class, class_names, grid_size, point_cloud_range,
|
||||
predict_boxes_when_training=True, **kwargs):
|
||||
super().__init__(
|
||||
model_cfg=model_cfg, num_class=num_class, class_names=class_names, grid_size=grid_size, point_cloud_range=point_cloud_range,
|
||||
predict_boxes_when_training=predict_boxes_when_training
|
||||
)
|
||||
|
||||
self.num_anchors_per_location = sum(self.num_anchors_per_location)
|
||||
|
||||
self.conv_cls = nn.Conv2d(
|
||||
input_channels, self.num_anchors_per_location * self.num_class,
|
||||
kernel_size=1
|
||||
)
|
||||
self.conv_box = nn.Conv2d(
|
||||
input_channels, self.num_anchors_per_location * self.box_coder.code_size,
|
||||
kernel_size=1
|
||||
)
|
||||
|
||||
if self.model_cfg.get('USE_DIRECTION_CLASSIFIER', None) is not None:
|
||||
self.conv_dir_cls = nn.Conv2d(
|
||||
input_channels,
|
||||
self.num_anchors_per_location * self.model_cfg.NUM_DIR_BINS,
|
||||
kernel_size=1
|
||||
)
|
||||
else:
|
||||
self.conv_dir_cls = None
|
||||
self.init_weights()
|
||||
|
||||
def init_weights(self):
|
||||
pi = 0.01
|
||||
nn.init.constant_(self.conv_cls.bias, -np.log((1 - pi) / pi))
|
||||
nn.init.normal_(self.conv_box.weight, mean=0, std=0.001)
|
||||
|
||||
def forward(self, data_dict):
|
||||
spatial_features_2d = data_dict['spatial_features_2d']
|
||||
|
||||
cls_preds = self.conv_cls(spatial_features_2d)
|
||||
box_preds = self.conv_box(spatial_features_2d)
|
||||
|
||||
cls_preds = cls_preds.permute(0, 2, 3, 1).contiguous() # [N, H, W, C]
|
||||
box_preds = box_preds.permute(0, 2, 3, 1).contiguous() # [N, H, W, C]
|
||||
|
||||
self.forward_ret_dict['cls_preds'] = cls_preds
|
||||
self.forward_ret_dict['box_preds'] = box_preds
|
||||
|
||||
if self.conv_dir_cls is not None:
|
||||
dir_cls_preds = self.conv_dir_cls(spatial_features_2d)
|
||||
dir_cls_preds = dir_cls_preds.permute(0, 2, 3, 1).contiguous()
|
||||
self.forward_ret_dict['dir_cls_preds'] = dir_cls_preds
|
||||
else:
|
||||
dir_cls_preds = None
|
||||
|
||||
if self.training:
|
||||
targets_dict = self.assign_targets(
|
||||
gt_boxes=data_dict['gt_boxes']
|
||||
)
|
||||
self.forward_ret_dict.update(targets_dict)
|
||||
|
||||
if not self.training or self.predict_boxes_when_training:
|
||||
batch_cls_preds, batch_box_preds = self.generate_predicted_boxes(
|
||||
batch_size=data_dict['batch_size'],
|
||||
cls_preds=cls_preds, box_preds=box_preds, dir_cls_preds=dir_cls_preds
|
||||
)
|
||||
data_dict['batch_cls_preds'] = batch_cls_preds
|
||||
data_dict['batch_box_preds'] = batch_box_preds
|
||||
data_dict['cls_preds_normalized'] = False
|
||||
|
||||
return data_dict
|
||||
Reference in New Issue
Block a user