diff --git a/pcdet/models/detectors/pillarnet.py b/pcdet/models/detectors/pillarnet.py new file mode 100644 index 0000000..965a441 --- /dev/null +++ b/pcdet/models/detectors/pillarnet.py @@ -0,0 +1,50 @@ +from .detector3d_template import Detector3DTemplate + + +class PillarNet(Detector3DTemplate): + def __init__(self, model_cfg, num_class, dataset): + super().__init__(model_cfg=model_cfg, num_class=num_class, dataset=dataset) + self.module_list = self.build_networks() + + def forward(self, batch_dict): + for cur_module in self.module_list: + batch_dict = cur_module(batch_dict) + + if self.training: + loss, tb_dict, disp_dict = self.get_training_loss() + + ret_dict = { + 'loss': loss + } + return ret_dict, tb_dict, disp_dict + else: + pred_dicts, recall_dicts = self.post_processing(batch_dict) + return pred_dicts, recall_dicts + + def get_training_loss(self): + disp_dict = {} + + loss_rpn, tb_dict = self.dense_head.get_loss() + tb_dict = { + 'loss_rpn': loss_rpn.item(), + **tb_dict + } + + loss = loss_rpn + return loss, tb_dict, disp_dict + + def post_processing(self, batch_dict): + post_process_cfg = self.model_cfg.POST_PROCESSING + batch_size = batch_dict['batch_size'] + final_pred_dict = batch_dict['final_box_dicts'] + recall_dict = {} + for index in range(batch_size): + pred_boxes = final_pred_dict[index]['pred_boxes'] + + recall_dict = self.generate_recall_record( + box_preds=pred_boxes, + recall_dict=recall_dict, batch_index=index, data_dict=batch_dict, + thresh_list=post_process_cfg.RECALL_THRESH_LIST + ) + + return final_pred_dict, recall_dict \ No newline at end of file