This commit is contained in:
2025-09-21 20:19:01 +08:00
parent 98a6bc63a3
commit cd898d4aee

View File

@@ -0,0 +1,123 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from .vfe_template import VFETemplate
class PFNLayer(nn.Module):
def __init__(self,
in_channels,
out_channels,
use_norm=True,
last_layer=False):
super().__init__()
self.last_vfe = last_layer
self.use_norm = use_norm
if not self.last_vfe:
out_channels = out_channels // 2
if self.use_norm:
self.linear = nn.Linear(in_channels, out_channels, bias=False)
self.norm = nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01)
else:
self.linear = nn.Linear(in_channels, out_channels, bias=True)
self.part = 50000
def forward(self, inputs):
if inputs.shape[0] > self.part:
# nn.Linear performs randomly when batch size is too large
num_parts = inputs.shape[0] // self.part
part_linear_out = [self.linear(inputs[num_part*self.part:(num_part+1)*self.part])
for num_part in range(num_parts+1)]
x = torch.cat(part_linear_out, dim=0)
else:
x = self.linear(inputs)
torch.backends.cudnn.enabled = False
x = self.norm(x.permute(0, 2, 1)).permute(0, 2, 1) if self.use_norm else x
torch.backends.cudnn.enabled = True
x = F.relu(x)
x_max = torch.max(x, dim=1, keepdim=True)[0]
if self.last_vfe:
return x_max
else:
x_repeat = x_max.repeat(1, inputs.shape[1], 1)
x_concatenated = torch.cat([x, x_repeat], dim=2)
return x_concatenated
class PillarVFE(VFETemplate):
def __init__(self, model_cfg, num_point_features, voxel_size, point_cloud_range, **kwargs):
super().__init__(model_cfg=model_cfg)
self.use_norm = self.model_cfg.USE_NORM
self.with_distance = self.model_cfg.WITH_DISTANCE
self.use_absolute_xyz = self.model_cfg.USE_ABSLOTE_XYZ
num_point_features += 6 if self.use_absolute_xyz else 3
if self.with_distance:
num_point_features += 1
self.num_filters = self.model_cfg.NUM_FILTERS
assert len(self.num_filters) > 0
num_filters = [num_point_features] + list(self.num_filters)
pfn_layers = []
for i in range(len(num_filters) - 1):
in_filters = num_filters[i]
out_filters = num_filters[i + 1]
pfn_layers.append(
PFNLayer(in_filters, out_filters, self.use_norm, last_layer=(i >= len(num_filters) - 2))
)
self.pfn_layers = nn.ModuleList(pfn_layers)
self.voxel_x = voxel_size[0]
self.voxel_y = voxel_size[1]
self.voxel_z = voxel_size[2]
self.x_offset = self.voxel_x / 2 + point_cloud_range[0]
self.y_offset = self.voxel_y / 2 + point_cloud_range[1]
self.z_offset = self.voxel_z / 2 + point_cloud_range[2]
def get_output_feature_dim(self):
return self.num_filters[-1]
def get_paddings_indicator(self, actual_num, max_num, axis=0):
actual_num = torch.unsqueeze(actual_num, axis + 1)
max_num_shape = [1] * len(actual_num.shape)
max_num_shape[axis + 1] = -1
max_num = torch.arange(max_num, dtype=torch.int, device=actual_num.device).view(max_num_shape)
paddings_indicator = actual_num.int() > max_num
return paddings_indicator
def forward(self, batch_dict, **kwargs):
voxel_features, voxel_num_points, coords = batch_dict['voxels'], batch_dict['voxel_num_points'], batch_dict['voxel_coords']
points_mean = voxel_features[:, :, :3].sum(dim=1, keepdim=True) / voxel_num_points.type_as(voxel_features).view(-1, 1, 1)
f_cluster = voxel_features[:, :, :3] - points_mean
f_center = torch.zeros_like(voxel_features[:, :, :3])
f_center[:, :, 0] = voxel_features[:, :, 0] - (coords[:, 3].to(voxel_features.dtype).unsqueeze(1) * self.voxel_x + self.x_offset)
f_center[:, :, 1] = voxel_features[:, :, 1] - (coords[:, 2].to(voxel_features.dtype).unsqueeze(1) * self.voxel_y + self.y_offset)
f_center[:, :, 2] = voxel_features[:, :, 2] - (coords[:, 1].to(voxel_features.dtype).unsqueeze(1) * self.voxel_z + self.z_offset)
if self.use_absolute_xyz:
features = [voxel_features, f_cluster, f_center]
else:
features = [voxel_features[..., 3:], f_cluster, f_center]
if self.with_distance:
points_dist = torch.norm(voxel_features[:, :, :3], 2, 2, keepdim=True)
features.append(points_dist)
features = torch.cat(features, dim=-1)
voxel_count = features.shape[1]
mask = self.get_paddings_indicator(voxel_num_points, voxel_count, axis=0)
mask = torch.unsqueeze(mask, -1).type_as(voxel_features)
features *= mask
for pfn in self.pfn_layers:
features = pfn(features)
features = features.squeeze()
batch_dict['pillar_features'] = features
return batch_dict