Add File
This commit is contained in:
107
pcdet/ops/pointnet2/pointnet2_stack/src/interpolate.cpp
Normal file
107
pcdet/ops/pointnet2/pointnet2_stack/src/interpolate.cpp
Normal file
@@ -0,0 +1,107 @@
|
|||||||
|
/*
|
||||||
|
Stacked-batch-data version of point interpolation, modified from the original implementation of official PointNet++ codes.
|
||||||
|
Written by Shaoshuai Shi
|
||||||
|
All Rights Reserved 2019-2020.
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
#include <torch/serialize/tensor.h>
|
||||||
|
#include <vector>
|
||||||
|
#include <math.h>
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <cuda.h>
|
||||||
|
#include <cuda_runtime_api.h>
|
||||||
|
#include "interpolate_gpu.h"
|
||||||
|
|
||||||
|
#define CHECK_CUDA(x) do { \
|
||||||
|
if (!x.type().is_cuda()) { \
|
||||||
|
fprintf(stderr, "%s must be CUDA tensor at %s:%d\n", #x, __FILE__, __LINE__); \
|
||||||
|
exit(-1); \
|
||||||
|
} \
|
||||||
|
} while (0)
|
||||||
|
#define CHECK_CONTIGUOUS(x) do { \
|
||||||
|
if (!x.is_contiguous()) { \
|
||||||
|
fprintf(stderr, "%s must be contiguous tensor at %s:%d\n", #x, __FILE__, __LINE__); \
|
||||||
|
exit(-1); \
|
||||||
|
} \
|
||||||
|
} while (0)
|
||||||
|
#define CHECK_INPUT(x) CHECK_CUDA(x);CHECK_CONTIGUOUS(x)
|
||||||
|
|
||||||
|
|
||||||
|
void three_nn_wrapper_stack(at::Tensor unknown_tensor,
|
||||||
|
at::Tensor unknown_batch_cnt_tensor, at::Tensor known_tensor,
|
||||||
|
at::Tensor known_batch_cnt_tensor, at::Tensor dist2_tensor, at::Tensor idx_tensor){
|
||||||
|
// unknown: (N1 + N2 ..., 3)
|
||||||
|
// unknown_batch_cnt: (batch_size), [N1, N2, ...]
|
||||||
|
// known: (M1 + M2 ..., 3)
|
||||||
|
// known_batch_cnt: (batch_size), [M1, M2, ...]
|
||||||
|
// Return:
|
||||||
|
// dist: (N1 + N2 ..., 3) l2 distance to the three nearest neighbors
|
||||||
|
// idx: (N1 + N2 ..., 3) index of the three nearest neighbors
|
||||||
|
CHECK_INPUT(unknown_tensor);
|
||||||
|
CHECK_INPUT(unknown_batch_cnt_tensor);
|
||||||
|
CHECK_INPUT(known_tensor);
|
||||||
|
CHECK_INPUT(known_batch_cnt_tensor);
|
||||||
|
CHECK_INPUT(dist2_tensor);
|
||||||
|
CHECK_INPUT(idx_tensor);
|
||||||
|
|
||||||
|
int batch_size = unknown_batch_cnt_tensor.size(0);
|
||||||
|
int N = unknown_tensor.size(0);
|
||||||
|
int M = known_tensor.size(0);
|
||||||
|
const float *unknown = unknown_tensor.data<float>();
|
||||||
|
const int *unknown_batch_cnt = unknown_batch_cnt_tensor.data<int>();
|
||||||
|
const float *known = known_tensor.data<float>();
|
||||||
|
const int *known_batch_cnt = known_batch_cnt_tensor.data<int>();
|
||||||
|
float *dist2 = dist2_tensor.data<float>();
|
||||||
|
int *idx = idx_tensor.data<int>();
|
||||||
|
|
||||||
|
three_nn_kernel_launcher_stack(batch_size, N, M, unknown, unknown_batch_cnt, known, known_batch_cnt, dist2, idx);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void three_interpolate_wrapper_stack(at::Tensor features_tensor,
|
||||||
|
at::Tensor idx_tensor, at::Tensor weight_tensor, at::Tensor out_tensor) {
|
||||||
|
// features_tensor: (M1 + M2 ..., C)
|
||||||
|
// idx_tensor: [N1 + N2 ..., 3]
|
||||||
|
// weight_tensor: [N1 + N2 ..., 3]
|
||||||
|
// Return:
|
||||||
|
// out_tensor: (N1 + N2 ..., C)
|
||||||
|
CHECK_INPUT(features_tensor);
|
||||||
|
CHECK_INPUT(idx_tensor);
|
||||||
|
CHECK_INPUT(weight_tensor);
|
||||||
|
CHECK_INPUT(out_tensor);
|
||||||
|
|
||||||
|
int N = out_tensor.size(0);
|
||||||
|
int channels = features_tensor.size(1);
|
||||||
|
const float *features = features_tensor.data<float>();
|
||||||
|
const float *weight = weight_tensor.data<float>();
|
||||||
|
const int *idx = idx_tensor.data<int>();
|
||||||
|
float *out = out_tensor.data<float>();
|
||||||
|
|
||||||
|
three_interpolate_kernel_launcher_stack(N, channels, features, idx, weight, out);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void three_interpolate_grad_wrapper_stack(at::Tensor grad_out_tensor, at::Tensor idx_tensor,
|
||||||
|
at::Tensor weight_tensor, at::Tensor grad_features_tensor) {
|
||||||
|
// grad_out_tensor: (N1 + N2 ..., C)
|
||||||
|
// idx_tensor: [N1 + N2 ..., 3]
|
||||||
|
// weight_tensor: [N1 + N2 ..., 3]
|
||||||
|
// Return:
|
||||||
|
// grad_features_tensor: (M1 + M2 ..., C)
|
||||||
|
CHECK_INPUT(grad_out_tensor);
|
||||||
|
CHECK_INPUT(idx_tensor);
|
||||||
|
CHECK_INPUT(weight_tensor);
|
||||||
|
CHECK_INPUT(grad_features_tensor);
|
||||||
|
|
||||||
|
int N = grad_out_tensor.size(0);
|
||||||
|
int channels = grad_out_tensor.size(1);
|
||||||
|
const float *grad_out = grad_out_tensor.data<float>();
|
||||||
|
const float *weight = weight_tensor.data<float>();
|
||||||
|
const int *idx = idx_tensor.data<int>();
|
||||||
|
float *grad_features = grad_features_tensor.data<float>();
|
||||||
|
|
||||||
|
// printf("N=%d, channels=%d\n", N, channels);
|
||||||
|
three_interpolate_grad_kernel_launcher_stack(N, channels, grad_out, idx, weight, grad_features);
|
||||||
|
}
|
||||||
Reference in New Issue
Block a user