This commit is contained in:
2025-09-21 20:18:53 +08:00
parent 05830e05a6
commit f6dc7ac842

View File

@@ -0,0 +1,160 @@
from collections import OrderedDict
from pathlib import Path
from torch import hub
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
class SegTemplate(nn.Module):
def __init__(self, constructor, feat_extract_layer, num_classes, pretrained_path=None, aux_loss=None):
"""
Initializes depth distribution network.
Args:
constructor: function, Model constructor
feat_extract_layer: string, Layer to extract features from
num_classes: int, Number of classes
pretrained_path: string, (Optional) Path of the model to load weights from
aux_loss: bool, Flag to include auxillary loss
"""
super().__init__()
self.num_classes = num_classes
self.pretrained_path = pretrained_path
self.pretrained = pretrained_path is not None
self.aux_loss = aux_loss
if self.pretrained:
# Preprocess Module
self.norm_mean = torch.Tensor([0.485, 0.456, 0.406])
self.norm_std = torch.Tensor([0.229, 0.224, 0.225])
# Model
self.model = self.get_model(constructor=constructor)
self.feat_extract_layer = feat_extract_layer
return_layers = {_layer:_layer for _layer in feat_extract_layer}
self.model.backbone.return_layers.update(return_layers)
def get_model(self, constructor):
"""
Get model
Args:
constructor: function, Model constructor
Returns:
model: nn.Module, Model
"""
# Get model
model = constructor(pretrained=False,
pretrained_backbone=False,
num_classes=self.num_classes,
aux_loss=self.aux_loss)
# Update weights
if self.pretrained_path is not None:
model_dict = model.state_dict()
# Download pretrained model if not available yet
checkpoint_path = Path(self.pretrained_path)
if not checkpoint_path.exists():
checkpoint = checkpoint_path.name
save_dir = checkpoint_path.parent
save_dir.mkdir(parents=True, exist_ok=True)
url = f'https://download.pytorch.org/models/{checkpoint}'
hub.load_state_dict_from_url(url, save_dir)
# Get pretrained state dict
pretrained_dict = torch.load(self.pretrained_path)
#pretrained_dict = self.filter_pretrained_dict(model_dict=model_dict, pretrained_dict=pretrained_dict)
# Update current model state dict
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict, strict=False)
return model.cuda()
def filter_pretrained_dict(self, model_dict, pretrained_dict):
"""
Removes layers from pretrained state dict that are not used or changed in model
Args:
model_dict: dict, Default model state dictionary
pretrained_dict: dict, Pretrained model state dictionary
Returns:
pretrained_dict: dict, Pretrained model state dictionary with removed weights
"""
# Removes aux classifier weights if not used
if "aux_classifier.0.weight" in pretrained_dict and "aux_classifier.0.weight" not in model_dict:
pretrained_dict = {key: value for key, value in pretrained_dict.items()
if "aux_classifier" not in key}
# Removes final conv layer from weights if number of classes are different
model_num_classes = model_dict["classifier.4.weight"].shape[0]
pretrained_num_classes = pretrained_dict["classifier.4.weight"].shape[0]
if model_num_classes != pretrained_num_classes:
pretrained_dict.pop("classifier.4.weight")
pretrained_dict.pop("classifier.4.bias")
return pretrained_dict
def forward(self, images):
"""
Forward pass
Args:
images: (N, 3, H_in, W_in), Input images
Returns
result: dict[torch.Tensor], Depth distribution result
features: (N, C, H_out, W_out), Image features
logits: (N, num_classes, H_out, W_out), Classification logits
aux: (N, num_classes, H_out, W_out), Auxillary classification logits
"""
# Preprocess images
if self.pretrained:
images = (images - self.norm_mean[None, :, None, None].type_as(images)) / self.norm_std[None, :, None, None].type_as(images)
x = images.cuda()
# Extract features
result = OrderedDict()
features = self.model.backbone(x)
for _layer in self.feat_extract_layer:
result[_layer] = features[_layer]
return result
if 'features' in features.keys():
feat_shape = features['features'].shape[-2:]
else:
feat_shape = features['layer1'].shape[-2:]
# Prediction classification logits
x = features["out"] # comment the classifier to reduce memory
# x = self.model.classifier(x)
# x = F.interpolate(x, size=feat_shape, mode='bilinear', align_corners=False)
result["logits"] = x
# Prediction auxillary classification logits
if self.model.aux_classifier is not None:
x = features["aux"]
x = self.model.aux_classifier(x)
x = F.interpolate(x, size=feat_shape, mode='bilinear', align_corners=False)
result["aux"] = x
return result
class SemDeepLabV3(SegTemplate):
def __init__(self, backbone_name, **kwargs):
"""
Initializes SemDeepLabV3 model
Args:
backbone_name: string, ResNet Backbone Name [ResNet50/ResNet101]
"""
if backbone_name == "ResNet50":
constructor = torchvision.models.segmentation.deeplabv3_resnet50
elif backbone_name == "ResNet101":
constructor = torchvision.models.segmentation.deeplabv3_resnet101
else:
raise NotImplementedError
super().__init__(constructor=constructor, **kwargs)