import copy import pickle import argparse import os from os import path as osp import torch from av2.utils.io import read_feather import numpy as np import multiprocessing as mp import pickle as pkl from pathlib import Path import pandas as pd from ..dataset import DatasetTemplate from .argo2_utils.so3 import yaw_to_quat, quat_to_yaw from .argo2_utils.constants import LABEL_ATTR def process_single_segment(segment_path, split, info_list, ts2idx, output_dir, save_bin): test_mode = 'test' in split if not test_mode: segment_anno = read_feather(Path(osp.join(segment_path, 'annotations.feather'))) segname = segment_path.split('/')[-1] frame_path_list = os.listdir(osp.join(segment_path, 'sensors/lidar/')) for frame_name in frame_path_list: ts = int(osp.basename(frame_name).split('.')[0]) if not test_mode: frame_anno = segment_anno[segment_anno['timestamp_ns'] == ts] else: frame_anno = None frame_path = osp.join(segment_path, 'sensors/lidar/', frame_name) frame_info = process_and_save_frame(frame_path, frame_anno, ts2idx, segname, output_dir, save_bin) info_list.append(frame_info) def process_and_save_frame(frame_path, frame_anno, ts2idx, segname, output_dir, save_bin): frame_info = {} frame_info['uuid'] = segname + '/' + frame_path.split('/')[-1].split('.')[0] frame_info['sample_idx'] = ts2idx[frame_info['uuid']] frame_info['image'] = dict() frame_info['point_cloud'] = dict( num_features=4, velodyne_path=None, ) frame_info['calib'] = dict() # not need for lidar-only frame_info['pose'] = dict() # not need for single frame frame_info['annos'] = dict( name=None, truncated=None, occluded=None, alpha=None, bbox=None, # not need for lidar-only dimensions=None, location=None, rotation_y=None, index=None, group_ids=None, camera_id=None, difficulty=None, num_points_in_gt=None, ) frame_info['sweeps'] = [] # not need for single frame if frame_anno is not None: frame_anno = frame_anno[frame_anno['num_interior_pts'] > 0] cuboid_params = frame_anno.loc[:, list(LABEL_ATTR)].to_numpy() cuboid_params = torch.from_numpy(cuboid_params) yaw = quat_to_yaw(cuboid_params[:, -4:]) xyz = cuboid_params[:, :3] lwh = cuboid_params[:, [3, 4, 5]] cat = frame_anno['category'].to_numpy().tolist() cat = [c.lower().capitalize() for c in cat] cat = np.array(cat) num_obj = len(cat) annos = frame_info['annos'] annos['name'] = cat annos['truncated'] = np.zeros(num_obj, dtype=np.float64) annos['occluded'] = np.zeros(num_obj, dtype=np.int64) annos['alpha'] = -10 * np.ones(num_obj, dtype=np.float64) annos['dimensions'] = lwh.numpy().astype(np.float64) annos['location'] = xyz.numpy().astype(np.float64) annos['rotation_y'] = yaw.numpy().astype(np.float64) annos['index'] = np.arange(num_obj, dtype=np.int32) annos['num_points_in_gt'] = frame_anno['num_interior_pts'].to_numpy().astype(np.int32) # frame_info['group_ids'] = np.arange(num_obj, dtype=np.int32) prefix2split = {'0': 'training', '1': 'training', '2': 'testing'} sample_idx = frame_info['sample_idx'] split = prefix2split[sample_idx[0]] abs_save_path = osp.join(output_dir, split, 'velodyne', f'{sample_idx}.bin') rel_save_path = osp.join(split, 'velodyne', f'{sample_idx}.bin') frame_info['point_cloud']['velodyne_path'] = rel_save_path if save_bin: save_point_cloud(frame_path, abs_save_path) return frame_info def save_point_cloud(frame_path, save_path): lidar = read_feather(Path(frame_path)) lidar = lidar.loc[:, ['x', 'y', 'z', 'intensity']].to_numpy().astype(np.float32) lidar.tofile(save_path) def prepare(root): ts2idx = {} ts_list = [] bin_idx_list = [] seg_path_list = [] seg_split_list = [] assert root.split('/')[-1] == 'sensor' # include test if you need it splits = ['train', 'val'] # , 'test'] num_train_samples = 0 num_val_samples = 0 num_test_samples = 0 # 0 for training, 1 for validation and 2 for testing. prefixes = [0, 1, ] # 2] for i in range(len(splits)): split = splits[i] prefix = prefixes[i] split_root = osp.join(root, split) seg_file_list = os.listdir(split_root) print(f'num of {split} segments:', len(seg_file_list)) for seg_idx, seg_name in enumerate(seg_file_list): seg_path = osp.join(split_root, seg_name) seg_path_list.append(seg_path) seg_split_list.append(split) assert seg_idx < 1000 frame_path_list = os.listdir(osp.join(seg_path, 'sensors/lidar/')) for frame_idx, frame_path in enumerate(frame_path_list): assert frame_idx < 1000 bin_idx = str(prefix) + str(seg_idx).zfill(3) + str(frame_idx).zfill(3) ts = frame_path.split('/')[-1].split('.')[0] ts = seg_name + '/' + ts # ts is not unique, so add seg_name ts2idx[ts] = bin_idx ts_list.append(ts) bin_idx_list.append(bin_idx) if split == 'train': num_train_samples = len(ts_list) elif split == 'val': num_val_samples = len(ts_list) - num_train_samples else: num_test_samples = len(ts_list) - num_train_samples - num_val_samples # print three num samples print('num of train samples:', num_train_samples) print('num of val samples:', num_val_samples) print('num of test samples:', num_test_samples) assert len(ts_list) == len(set(ts_list)) assert len(bin_idx_list) == len(set(bin_idx_list)) return ts2idx, seg_path_list, seg_split_list def create_argo2_infos(seg_path_list, seg_split_list, info_list, ts2idx, output_dir, save_bin, token, num_process): for seg_i, seg_path in enumerate(seg_path_list): if seg_i % num_process != token: continue print(f'processing segment: {seg_i}/{len(seg_path_list)}') split = seg_split_list[seg_i] process_single_segment(seg_path, split, info_list, ts2idx, output_dir, save_bin) class Argo2Dataset(DatasetTemplate): def __init__(self, dataset_cfg, class_names, training=True, root_path=None, logger=None): """ Args: root_path: dataset_cfg: class_names: training: logger: """ super().__init__( dataset_cfg=dataset_cfg, class_names=class_names, training=training, root_path=root_path, logger=logger ) self.split = self.dataset_cfg.DATA_SPLIT[self.mode] self.root_split_path = self.root_path / ('training' if self.split != 'test' else 'testing') split_dir = self.root_path / 'ImageSets' / (self.split + '.txt') self.sample_id_list = [x.strip() for x in open(split_dir).readlines()] if split_dir.exists() else None self.argo2_infos = [] self.include_argo2_data(self.mode) self.evaluate_range = dataset_cfg.get("EVALUATE_RANGE", 200.0) def include_argo2_data(self, mode): if self.logger is not None: self.logger.info('Loading Argoverse2 dataset') argo2_infos = [] for info_path in self.dataset_cfg.INFO_PATH[mode]: info_path = self.root_path / info_path if not info_path.exists(): continue with open(info_path, 'rb') as f: infos = pickle.load(f) argo2_infos.extend(infos) self.argo2_infos.extend(argo2_infos) if self.logger is not None: self.logger.info('Total samples for Argo2 dataset: %d' % (len(argo2_infos))) def set_split(self, split): super().__init__( dataset_cfg=self.dataset_cfg, class_names=self.class_names, training=self.training, root_path=self.root_path, logger=self.logger ) self.split = split self.root_split_path = self.root_path / ('training' if self.split != 'test' else 'testing') split_dir = self.root_path / 'ImageSets' / (self.split + '.txt') self.sample_id_list = [x.strip() for x in open(split_dir).readlines()] if split_dir.exists() else None def get_lidar(self, idx): lidar_file = self.root_split_path / 'velodyne' / ('%s.bin' % idx) assert lidar_file.exists() return np.fromfile(str(lidar_file), dtype=np.float32).reshape(-1, 4) @staticmethod def generate_prediction_dicts(batch_dict, pred_dicts, class_names, output_path=None): """ Args: batch_dict: frame_id: pred_dicts: list of pred_dicts pred_boxes: (N, 7), Tensor pred_scores: (N), Tensor pred_labels: (N), Tensor class_names: output_path: Returns: """ def get_template_prediction(num_samples): ret_dict = { 'name': np.zeros(num_samples), 'truncated': np.zeros(num_samples), 'occluded': np.zeros(num_samples), 'alpha': np.zeros(num_samples), 'bbox': np.zeros([num_samples, 4]), 'dimensions': np.zeros([num_samples, 3]), 'location': np.zeros([num_samples, 3]), 'rotation_y': np.zeros(num_samples), 'score': np.zeros(num_samples), 'boxes_lidar': np.zeros([num_samples, 7]) } return ret_dict def generate_single_sample_dict(batch_index, box_dict): pred_scores = box_dict['pred_scores'].cpu().numpy() pred_boxes = box_dict['pred_boxes'].cpu().numpy() pred_labels = box_dict['pred_labels'].cpu().numpy() pred_dict = get_template_prediction(pred_scores.shape[0]) if pred_scores.shape[0] == 0: return pred_dict pred_boxes_img = pred_boxes pred_boxes_camera = pred_boxes pred_dict['name'] = np.array(class_names)[pred_labels - 1] pred_dict['alpha'] = -np.arctan2(-pred_boxes[:, 1], pred_boxes[:, 0]) + pred_boxes_camera[:, 6] pred_dict['bbox'] = pred_boxes_img pred_dict['dimensions'] = pred_boxes_camera[:, 3:6] pred_dict['location'] = pred_boxes_camera[:, 0:3] pred_dict['rotation_y'] = pred_boxes_camera[:, 6] pred_dict['score'] = pred_scores pred_dict['boxes_lidar'] = pred_boxes return pred_dict annos = [] for index, box_dict in enumerate(pred_dicts): frame_id = batch_dict['frame_id'][index] single_pred_dict = generate_single_sample_dict(index, box_dict) single_pred_dict['frame_id'] = frame_id annos.append(single_pred_dict) if output_path is not None: cur_det_file = output_path / ('%s.txt' % frame_id) with open(cur_det_file, 'w') as f: bbox = single_pred_dict['bbox'] loc = single_pred_dict['location'] dims = single_pred_dict['dimensions'] # lhw -> hwl for idx in range(len(bbox)): print('%s -1 -1 %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f' % (single_pred_dict['name'][idx], single_pred_dict['alpha'][idx], bbox[idx][0], bbox[idx][1], bbox[idx][2], bbox[idx][3], dims[idx][1], dims[idx][2], dims[idx][0], loc[idx][0], loc[idx][1], loc[idx][2], single_pred_dict['rotation_y'][idx], single_pred_dict['score'][idx]), file=f) return annos def __len__(self): if self._merge_all_iters_to_one_epoch: return len(self.argo2_infos) * self.total_epochs return len(self.argo2_infos) def __getitem__(self, index): # index = 4 if self._merge_all_iters_to_one_epoch: index = index % len(self.argo2_infos) info = copy.deepcopy(self.argo2_infos[index]) sample_idx = info['point_cloud']['velodyne_path'].split('/')[-1].rstrip('.bin') calib = None get_item_list = self.dataset_cfg.get('GET_ITEM_LIST', ['points']) input_dict = { 'frame_id': sample_idx, 'calib': calib, } if 'annos' in info: annos = info['annos'] loc, dims, rots = annos['location'], annos['dimensions'], annos['rotation_y'] gt_names = annos['name'] gt_bboxes_3d = np.concatenate([loc, dims, rots[..., np.newaxis]], axis=1).astype(np.float32) input_dict.update({ 'gt_names': gt_names, 'gt_boxes': gt_bboxes_3d }) if "points" in get_item_list: points = self.get_lidar(sample_idx) input_dict['points'] = points input_dict['calib'] = calib data_dict = self.prepare_data(data_dict=input_dict) return data_dict def format_results(self, outputs, class_names, pklfile_prefix=None, submission_prefix=None, ): """Format the results to .feather file with argo2 format. Args: outputs (list[dict]): Testing results of the dataset. pklfile_prefix (str | None): The prefix of pkl files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. submission_prefix (str | None): The prefix of submitted files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. Returns: tuple: (result_files, tmp_dir), result_files is a dict containing the json filepaths, tmp_dir is the temporal directory created for saving json files when jsonfile_prefix is not specified. """ import pandas as pd assert len(self.argo2_infos) == len(outputs) num_samples = len(outputs) print('\nGot {} samples'.format(num_samples)) serialized_dts_list = [] print('\nConvert predictions to Argoverse 2 format') for i in range(num_samples): out_i = outputs[i] log_id, ts = self.argo2_infos[i]['uuid'].split('/') track_uuid = None #cat_id = out_i['labels_3d'].numpy().tolist() #category = [class_names[i].upper() for i in cat_id] category = [class_name.upper() for class_name in out_i['name']] serialized_dts = pd.DataFrame( self.lidar_box_to_argo2(out_i['bbox']).numpy(), columns=list(LABEL_ATTR) ) serialized_dts["score"] = out_i['score'] serialized_dts["log_id"] = log_id serialized_dts["timestamp_ns"] = int(ts) serialized_dts["category"] = category serialized_dts_list.append(serialized_dts) dts = ( pd.concat(serialized_dts_list) .set_index(["log_id", "timestamp_ns"]) .sort_index() ) dts = dts.sort_values("score", ascending=False).reset_index() if pklfile_prefix is not None: if not pklfile_prefix.endswith(('.feather')): pklfile_prefix = f'{pklfile_prefix}.feather' dts.to_feather(pklfile_prefix) print(f'Result is saved to {pklfile_prefix}.') dts = dts.set_index(["log_id", "timestamp_ns"]).sort_index() return dts def lidar_box_to_argo2(self, boxes): boxes = torch.Tensor(boxes) cnt_xyz = boxes[:, :3] lwh = boxes[:, [3, 4, 5]] yaw = boxes[:, 6] quat = yaw_to_quat(yaw) argo_cuboid = torch.cat([cnt_xyz, lwh, quat], dim=1) return argo_cuboid def evaluation(self, results, class_names, eval_metric='waymo', logger=None, pklfile_prefix=None, submission_prefix=None, show=False, output_path=None, pipeline=None): """Evaluation in Argo2 protocol. Args: results (list[dict]): Testing results of the dataset. metric (str | list[str]): Metrics to be evaluated. Default: 'waymo'. Another supported metric is 'Argo2'. logger (logging.Logger | str | None): Logger used for printing related information during evaluation. Default: None. pklfile_prefix (str | None): The prefix of pkl files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. submission_prefix (str | None): The prefix of submission datas. If not specified, the submission data will not be generated. show (bool): Whether to visualize. Default: False. out_dir (str): Path to save the visualization results. Default: None. pipeline (list[dict], optional): raw data loading for showing. Default: None. Returns: dict[str: float]: results of each evaluation metric """ from av2.evaluation.detection.constants import CompetitionCategories from av2.evaluation.detection.utils import DetectionCfg from av2.evaluation.detection.eval import evaluate from av2.utils.io import read_feather dts = self.format_results(results, class_names, pklfile_prefix, submission_prefix) argo2_root = self.root_path val_anno_path = osp.join(argo2_root, 'val_anno.feather') gts = read_feather(Path(val_anno_path)) gts = gts.set_index(["log_id", "timestamp_ns"]).sort_values("category") valid_uuids_gts = gts.index.tolist() valid_uuids_dts = dts.index.tolist() valid_uuids = set(valid_uuids_gts) & set(valid_uuids_dts) gts = gts.loc[list(valid_uuids)].sort_index() categories = set(x.value for x in CompetitionCategories) categories &= set(gts["category"].unique().tolist()) dataset_dir = Path(argo2_root) / 'sensor' / 'val' cfg = DetectionCfg( dataset_dir=dataset_dir, categories=tuple(sorted(categories)), max_range_m=self.evaluate_range, eval_only_roi_instances=True, ) # Evaluate using Argoverse detection API. eval_dts, eval_gts, metrics = evaluate( dts.reset_index(), gts.reset_index(), cfg ) valid_categories = sorted(categories) + ["AVERAGE_METRICS"] ap_dict = {} for index, row in metrics.iterrows(): ap_dict[index] = row.to_json() return metrics.loc[valid_categories], ap_dict def parse_config(): parser = argparse.ArgumentParser(description='arg parser') parser.add_argument('--root_path', type=str, default="/data/argo2/sensor") parser.add_argument('--output_dir', type=str, default="/data/argo2/processed") args = parser.parse_args() return args if __name__ == '__main__': args = parse_config() root = args.root_path output_dir = args.output_dir save_bin = True ts2idx, seg_path_list, seg_split_list = prepare(root) velodyne_dir = Path(output_dir) / 'training' / 'velodyne' if not velodyne_dir.exists(): velodyne_dir.mkdir(parents=True, exist_ok=True) info_list = [] create_argo2_infos(seg_path_list, seg_split_list, info_list, ts2idx, output_dir, save_bin, 0, 1) assert len(info_list) > 0 train_info = [e for e in info_list if e['sample_idx'][0] == '0'] val_info = [e for e in info_list if e['sample_idx'][0] == '1'] test_info = [e for e in info_list if e['sample_idx'][0] == '2'] trainval_info = train_info + val_info assert len(train_info) + len(val_info) + len(test_info) == len(info_list) # save info_list in under the output_dir as pickle file with open(osp.join(output_dir, 'argo2_infos_train.pkl'), 'wb') as f: pkl.dump(train_info, f) with open(osp.join(output_dir, 'argo2_infos_val.pkl'), 'wb') as f: pkl.dump(val_info, f) # save validation anno feather save_feather_path = os.path.join(output_dir, 'val_anno.feather') val_seg_path_list = [seg_path for seg_path in seg_path_list if 'val' in seg_path] assert len(val_seg_path_list) == len([i for i in seg_split_list if i == 'val']) seg_anno_list = [] for seg_path in val_seg_path_list: seg_anno = read_feather(osp.join(seg_path, 'annotations.feather')) log_id = seg_path.split('/')[-1] seg_anno["log_id"] = log_id seg_anno_list.append(seg_anno) gts = pd.concat(seg_anno_list).reset_index() gts.to_feather(save_feather_path)