import torch import torch.nn as nn import torch.nn.functional as F from .vfe_template import VFETemplate class PFNLayer(nn.Module): def __init__(self, in_channels, out_channels, use_norm=True, last_layer=False): super().__init__() self.last_vfe = last_layer self.use_norm = use_norm if not self.last_vfe: out_channels = out_channels // 2 if self.use_norm: self.linear = nn.Linear(in_channels, out_channels, bias=False) self.norm = nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01) else: self.linear = nn.Linear(in_channels, out_channels, bias=True) self.part = 50000 def forward(self, inputs): if inputs.shape[0] > self.part: # nn.Linear performs randomly when batch size is too large num_parts = inputs.shape[0] // self.part part_linear_out = [self.linear(inputs[num_part*self.part:(num_part+1)*self.part]) for num_part in range(num_parts+1)] x = torch.cat(part_linear_out, dim=0) else: x = self.linear(inputs) torch.backends.cudnn.enabled = False x = self.norm(x.permute(0, 2, 1)).permute(0, 2, 1) if self.use_norm else x torch.backends.cudnn.enabled = True x = F.relu(x) x_max = torch.max(x, dim=1, keepdim=True)[0] if self.last_vfe: return x_max else: x_repeat = x_max.repeat(1, inputs.shape[1], 1) x_concatenated = torch.cat([x, x_repeat], dim=2) return x_concatenated class PillarVFE(VFETemplate): def __init__(self, model_cfg, num_point_features, voxel_size, point_cloud_range, **kwargs): super().__init__(model_cfg=model_cfg) self.use_norm = self.model_cfg.USE_NORM self.with_distance = self.model_cfg.WITH_DISTANCE self.use_absolute_xyz = self.model_cfg.USE_ABSLOTE_XYZ num_point_features += 6 if self.use_absolute_xyz else 3 if self.with_distance: num_point_features += 1 self.num_filters = self.model_cfg.NUM_FILTERS assert len(self.num_filters) > 0 num_filters = [num_point_features] + list(self.num_filters) pfn_layers = [] for i in range(len(num_filters) - 1): in_filters = num_filters[i] out_filters = num_filters[i + 1] pfn_layers.append( PFNLayer(in_filters, out_filters, self.use_norm, last_layer=(i >= len(num_filters) - 2)) ) self.pfn_layers = nn.ModuleList(pfn_layers) self.voxel_x = voxel_size[0] self.voxel_y = voxel_size[1] self.voxel_z = voxel_size[2] self.x_offset = self.voxel_x / 2 + point_cloud_range[0] self.y_offset = self.voxel_y / 2 + point_cloud_range[1] self.z_offset = self.voxel_z / 2 + point_cloud_range[2] def get_output_feature_dim(self): return self.num_filters[-1] def get_paddings_indicator(self, actual_num, max_num, axis=0): actual_num = torch.unsqueeze(actual_num, axis + 1) max_num_shape = [1] * len(actual_num.shape) max_num_shape[axis + 1] = -1 max_num = torch.arange(max_num, dtype=torch.int, device=actual_num.device).view(max_num_shape) paddings_indicator = actual_num.int() > max_num return paddings_indicator def forward(self, batch_dict, **kwargs): voxel_features, voxel_num_points, coords = batch_dict['voxels'], batch_dict['voxel_num_points'], batch_dict['voxel_coords'] points_mean = voxel_features[:, :, :3].sum(dim=1, keepdim=True) / voxel_num_points.type_as(voxel_features).view(-1, 1, 1) f_cluster = voxel_features[:, :, :3] - points_mean f_center = torch.zeros_like(voxel_features[:, :, :3]) f_center[:, :, 0] = voxel_features[:, :, 0] - (coords[:, 3].to(voxel_features.dtype).unsqueeze(1) * self.voxel_x + self.x_offset) f_center[:, :, 1] = voxel_features[:, :, 1] - (coords[:, 2].to(voxel_features.dtype).unsqueeze(1) * self.voxel_y + self.y_offset) f_center[:, :, 2] = voxel_features[:, :, 2] - (coords[:, 1].to(voxel_features.dtype).unsqueeze(1) * self.voxel_z + self.z_offset) if self.use_absolute_xyz: features = [voxel_features, f_cluster, f_center] else: features = [voxel_features[..., 3:], f_cluster, f_center] if self.with_distance: points_dist = torch.norm(voxel_features[:, :, :3], 2, 2, keepdim=True) features.append(points_dist) features = torch.cat(features, dim=-1) voxel_count = features.shape[1] mask = self.get_paddings_indicator(voxel_num_points, voxel_count, axis=0) mask = torch.unsqueeze(mask, -1).type_as(voxel_features) features *= mask for pfn in self.pfn_layers: features = pfn(features) features = features.squeeze() batch_dict['pillar_features'] = features return batch_dict