import numpy as np import torch.nn as nn from .anchor_head_template import AnchorHeadTemplate class AnchorHeadSingle(AnchorHeadTemplate): def __init__(self, model_cfg, input_channels, num_class, class_names, grid_size, point_cloud_range, predict_boxes_when_training=True, **kwargs): super().__init__( model_cfg=model_cfg, num_class=num_class, class_names=class_names, grid_size=grid_size, point_cloud_range=point_cloud_range, predict_boxes_when_training=predict_boxes_when_training ) self.num_anchors_per_location = sum(self.num_anchors_per_location) self.conv_cls = nn.Conv2d( input_channels, self.num_anchors_per_location * self.num_class, kernel_size=1 ) self.conv_box = nn.Conv2d( input_channels, self.num_anchors_per_location * self.box_coder.code_size, kernel_size=1 ) if self.model_cfg.get('USE_DIRECTION_CLASSIFIER', None) is not None: self.conv_dir_cls = nn.Conv2d( input_channels, self.num_anchors_per_location * self.model_cfg.NUM_DIR_BINS, kernel_size=1 ) else: self.conv_dir_cls = None self.init_weights() def init_weights(self): pi = 0.01 nn.init.constant_(self.conv_cls.bias, -np.log((1 - pi) / pi)) nn.init.normal_(self.conv_box.weight, mean=0, std=0.001) def forward(self, data_dict): spatial_features_2d = data_dict['spatial_features_2d'] cls_preds = self.conv_cls(spatial_features_2d) box_preds = self.conv_box(spatial_features_2d) cls_preds = cls_preds.permute(0, 2, 3, 1).contiguous() # [N, H, W, C] box_preds = box_preds.permute(0, 2, 3, 1).contiguous() # [N, H, W, C] self.forward_ret_dict['cls_preds'] = cls_preds self.forward_ret_dict['box_preds'] = box_preds if self.conv_dir_cls is not None: dir_cls_preds = self.conv_dir_cls(spatial_features_2d) dir_cls_preds = dir_cls_preds.permute(0, 2, 3, 1).contiguous() self.forward_ret_dict['dir_cls_preds'] = dir_cls_preds else: dir_cls_preds = None if self.training: targets_dict = self.assign_targets( gt_boxes=data_dict['gt_boxes'] ) self.forward_ret_dict.update(targets_dict) if not self.training or self.predict_boxes_when_training: batch_cls_preds, batch_box_preds = self.generate_predicted_boxes( batch_size=data_dict['batch_size'], cls_preds=cls_preds, box_preds=box_preds, dir_cls_preds=dir_cls_preds ) data_dict['batch_cls_preds'] = batch_cls_preds data_dict['batch_box_preds'] = batch_box_preds data_dict['cls_preds_normalized'] = False return data_dict