from .detector3d_template import Detector3DTemplate class CaDDN(Detector3DTemplate): def __init__(self, model_cfg, num_class, dataset): super().__init__(model_cfg=model_cfg, num_class=num_class, dataset=dataset) self.module_list = self.build_networks() def forward(self, batch_dict): for cur_module in self.module_list: batch_dict = cur_module(batch_dict) if self.training: loss, tb_dict, disp_dict = self.get_training_loss() ret_dict = { 'loss': loss } return ret_dict, tb_dict, disp_dict else: pred_dicts, recall_dicts = self.post_processing(batch_dict) return pred_dicts, recall_dicts def get_training_loss(self): disp_dict = {} loss_rpn, tb_dict_rpn = self.dense_head.get_loss() loss_depth, tb_dict_depth = self.vfe.get_loss() tb_dict = { 'loss_rpn': loss_rpn.item(), 'loss_depth': loss_depth.item(), **tb_dict_rpn, **tb_dict_depth } loss = loss_rpn + loss_depth return loss, tb_dict, disp_dict