from .detector3d_template import Detector3DTemplate class PVRCNN(Detector3DTemplate): def __init__(self, model_cfg, num_class, dataset): super().__init__(model_cfg=model_cfg, num_class=num_class, dataset=dataset) self.module_list = self.build_networks() def forward(self, batch_dict): for cur_module in self.module_list: batch_dict = cur_module(batch_dict) if self.training: loss, tb_dict, disp_dict = self.get_training_loss() ret_dict = { 'loss': loss } return ret_dict, tb_dict, disp_dict else: pred_dicts, recall_dicts = self.post_processing(batch_dict) return pred_dicts, recall_dicts def get_training_loss(self): disp_dict = {} loss_rpn, tb_dict = self.dense_head.get_loss() loss_point, tb_dict = self.point_head.get_loss(tb_dict) loss_rcnn, tb_dict = self.roi_head.get_loss(tb_dict) loss = loss_rpn + loss_point + loss_rcnn if hasattr(self.backbone_3d, 'get_loss'): loss_backbone3d, tb_dict = self.backbone_3d.get_loss(tb_dict) loss += loss_backbone3d return loss, tb_dict, disp_dict