# This file is modified from https://github.com/tianweiy/CenterPoint import torch import torch.nn.functional as F import numpy as np import numba def gaussian_radius(height, width, min_overlap=0.5): """ Args: height: (N) width: (N) min_overlap: Returns: """ a1 = 1 b1 = (height + width) c1 = width * height * (1 - min_overlap) / (1 + min_overlap) sq1 = (b1 ** 2 - 4 * a1 * c1).sqrt() r1 = (b1 + sq1) / 2 a2 = 4 b2 = 2 * (height + width) c2 = (1 - min_overlap) * width * height sq2 = (b2 ** 2 - 4 * a2 * c2).sqrt() r2 = (b2 + sq2) / 2 a3 = 4 * min_overlap b3 = -2 * min_overlap * (height + width) c3 = (min_overlap - 1) * width * height sq3 = (b3 ** 2 - 4 * a3 * c3).sqrt() r3 = (b3 + sq3) / 2 ret = torch.min(torch.min(r1, r2), r3) return ret def gaussian2D(shape, sigma=1): m, n = [(ss - 1.) / 2. for ss in shape] y, x = np.ogrid[-m:m + 1, -n:n + 1] h = np.exp(-(x * x + y * y) / (2 * sigma * sigma)) h[h < np.finfo(h.dtype).eps * h.max()] = 0 return h def draw_gaussian_to_heatmap(heatmap, center, radius, k=1, valid_mask=None): diameter = 2 * radius + 1 gaussian = gaussian2D((diameter, diameter), sigma=diameter / 6) x, y = int(center[0]), int(center[1]) height, width = heatmap.shape[0:2] left, right = min(x, radius), min(width - x, radius + 1) top, bottom = min(y, radius), min(height - y, radius + 1) masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right] masked_gaussian = torch.from_numpy( gaussian[radius - top:radius + bottom, radius - left:radius + right] ).to(heatmap.device).float() if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0: # TODO debug if valid_mask is not None: cur_valid_mask = valid_mask[y - top:y + bottom, x - left:x + right] masked_gaussian = masked_gaussian * cur_valid_mask.float() torch.max(masked_heatmap, masked_gaussian * k, out=masked_heatmap) return heatmap def _nms(heat, kernel=3): pad = (kernel - 1) // 2 hmax = F.max_pool2d(heat, (kernel, kernel), stride=1, padding=pad) keep = (hmax == heat).float() return heat * keep def gaussian3D(shape, sigma=1): m, n = [(ss - 1.) / 2. for ss in shape] y, x = np.ogrid[-m:m + 1, -n:n + 1] h = np.exp(-(x * x + y * y) / (2 * sigma * sigma)) h[h < np.finfo(h.dtype).eps * h.max()] = 0 return h def draw_gaussian_to_heatmap_voxels(heatmap, distances, radius, k=1): diameter = 2 * radius + 1 sigma = diameter / 6 masked_gaussian = torch.exp(- distances / (2 * sigma * sigma)) torch.max(heatmap, masked_gaussian, out=heatmap) return heatmap @numba.jit(nopython=True) def circle_nms(dets, thresh): x1 = dets[:, 0] y1 = dets[:, 1] scores = dets[:, 2] order = scores.argsort()[::-1].astype(np.int32) # highest->lowest ndets = dets.shape[0] suppressed = np.zeros((ndets), dtype=np.int32) keep = [] for _i in range(ndets): i = order[_i] # start with highest score box if suppressed[i] == 1: # if any box have enough iou with this, remove it continue keep.append(i) for _j in range(_i + 1, ndets): j = order[_j] if suppressed[j] == 1: continue # calculate center distance between i and j box dist = (x1[i] - x1[j]) ** 2 + (y1[i] - y1[j]) ** 2 # ovr = inter / areas[j] if dist <= thresh: suppressed[j] = 1 return keep def _circle_nms(boxes, min_radius, post_max_size=83): """ NMS according to center distance """ keep = np.array(circle_nms(boxes.cpu().numpy(), thresh=min_radius))[:post_max_size] keep = torch.from_numpy(keep).long().to(boxes.device) return keep def _gather_feat(feat, ind, mask=None): dim = feat.size(2) ind = ind.unsqueeze(2).expand(ind.size(0), ind.size(1), dim) feat = feat.gather(1, ind) if mask is not None: mask = mask.unsqueeze(2).expand_as(feat) feat = feat[mask] feat = feat.view(-1, dim) return feat def _transpose_and_gather_feat(feat, ind): feat = feat.permute(0, 2, 3, 1).contiguous() feat = feat.view(feat.size(0), -1, feat.size(3)) feat = _gather_feat(feat, ind) return feat def _topk(scores, K=40): batch, num_class, height, width = scores.size() topk_scores, topk_inds = torch.topk(scores.flatten(2, 3), K) topk_inds = topk_inds % (height * width) topk_ys = (topk_inds // width).float() topk_xs = (topk_inds % width).int().float() topk_score, topk_ind = torch.topk(topk_scores.view(batch, -1), K) topk_classes = (topk_ind // K).int() topk_inds = _gather_feat(topk_inds.view(batch, -1, 1), topk_ind).view(batch, K) topk_ys = _gather_feat(topk_ys.view(batch, -1, 1), topk_ind).view(batch, K) topk_xs = _gather_feat(topk_xs.view(batch, -1, 1), topk_ind).view(batch, K) return topk_score, topk_inds, topk_classes, topk_ys, topk_xs def decode_bbox_from_heatmap(heatmap, rot_cos, rot_sin, center, center_z, dim, point_cloud_range=None, voxel_size=None, feature_map_stride=None, vel=None, iou=None, K=100, circle_nms=False, score_thresh=None, post_center_limit_range=None): batch_size, num_class, _, _ = heatmap.size() if circle_nms: # TODO: not checked yet assert False, 'not checked yet' heatmap = _nms(heatmap) scores, inds, class_ids, ys, xs = _topk(heatmap, K=K) center = _transpose_and_gather_feat(center, inds).view(batch_size, K, 2) rot_sin = _transpose_and_gather_feat(rot_sin, inds).view(batch_size, K, 1) rot_cos = _transpose_and_gather_feat(rot_cos, inds).view(batch_size, K, 1) center_z = _transpose_and_gather_feat(center_z, inds).view(batch_size, K, 1) dim = _transpose_and_gather_feat(dim, inds).view(batch_size, K, 3) angle = torch.atan2(rot_sin, rot_cos) xs = xs.view(batch_size, K, 1) + center[:, :, 0:1] ys = ys.view(batch_size, K, 1) + center[:, :, 1:2] xs = xs * feature_map_stride * voxel_size[0] + point_cloud_range[0] ys = ys * feature_map_stride * voxel_size[1] + point_cloud_range[1] box_part_list = [xs, ys, center_z, dim, angle] if vel is not None: vel = _transpose_and_gather_feat(vel, inds).view(batch_size, K, 2) box_part_list.append(vel) if iou is not None: iou = _transpose_and_gather_feat(iou, inds).view(batch_size, K) final_box_preds = torch.cat((box_part_list), dim=-1) final_scores = scores.view(batch_size, K) final_class_ids = class_ids.view(batch_size, K) assert post_center_limit_range is not None mask = (final_box_preds[..., :3] >= post_center_limit_range[:3]).all(2) mask &= (final_box_preds[..., :3] <= post_center_limit_range[3:]).all(2) if score_thresh is not None: mask &= (final_scores > score_thresh) ret_pred_dicts = [] for k in range(batch_size): cur_mask = mask[k] cur_boxes = final_box_preds[k, cur_mask] cur_scores = final_scores[k, cur_mask] cur_labels = final_class_ids[k, cur_mask] if circle_nms: assert False, 'not checked yet' centers = cur_boxes[:, [0, 1]] boxes = torch.cat((centers, scores.view(-1, 1)), dim=1) keep = _circle_nms(boxes, min_radius=min_radius, post_max_size=nms_post_max_size) cur_boxes = cur_boxes[keep] cur_scores = cur_scores[keep] cur_labels = cur_labels[keep] ret_pred_dicts.append({ 'pred_boxes': cur_boxes, 'pred_scores': cur_scores, 'pred_labels': cur_labels }) if iou is not None: ret_pred_dicts[-1]['pred_iou'] = iou[k, cur_mask] return ret_pred_dicts def _topk_1d(scores, batch_size, batch_idx, obj, K=40, nuscenes=False): # scores: (N, num_classes) topk_score_list = [] topk_inds_list = [] topk_classes_list = [] for bs_idx in range(batch_size): batch_inds = batch_idx==bs_idx if obj.shape[-1] == 1 and not nuscenes: score = scores[batch_inds].permute(1, 0) topk_scores, topk_inds = torch.topk(score, K) topk_score, topk_ind = torch.topk(obj[topk_inds.view(-1)].squeeze(-1), K) #torch.topk(topk_scores.view(-1), K) else: score = obj[batch_inds].permute(1, 0) topk_scores, topk_inds = torch.topk(score, min(K, score.shape[-1])) topk_score, topk_ind = torch.topk(topk_scores.view(-1), min(K, topk_scores.view(-1).shape[-1])) #topk_score, topk_ind = torch.topk(score.reshape(-1), K) topk_classes = (topk_ind // K).int() topk_inds = topk_inds.view(-1).gather(0, topk_ind) #print('topk_inds', topk_inds) if not obj is None and obj.shape[-1] == 1: topk_score_list.append(obj[batch_inds][topk_inds]) else: topk_score_list.append(topk_score) topk_inds_list.append(topk_inds) topk_classes_list.append(topk_classes) topk_score = torch.stack(topk_score_list) topk_inds = torch.stack(topk_inds_list) topk_classes = torch.stack(topk_classes_list) return topk_score, topk_inds, topk_classes def gather_feat_idx(feats, inds, batch_size, batch_idx): feats_list = [] dim = feats.size(-1) _inds = inds.unsqueeze(-1).expand(inds.size(0), inds.size(1), dim) for bs_idx in range(batch_size): batch_inds = batch_idx==bs_idx feat = feats[batch_inds] feats_list.append(feat.gather(0, _inds[bs_idx])) feats = torch.stack(feats_list) return feats def decode_bbox_from_voxels_nuscenes(batch_size, indices, obj, rot_cos, rot_sin, center, center_z, dim, vel=None, iou=None, point_cloud_range=None, voxel_size=None, voxels_3d=None, feature_map_stride=None, K=100, score_thresh=None, post_center_limit_range=None, add_features=None): batch_idx = indices[:, 0] spatial_indices = indices[:, 1:] scores, inds, class_ids = _topk_1d(None, batch_size, batch_idx, obj, K=K, nuscenes=True) center = gather_feat_idx(center, inds, batch_size, batch_idx) rot_sin = gather_feat_idx(rot_sin, inds, batch_size, batch_idx) rot_cos = gather_feat_idx(rot_cos, inds, batch_size, batch_idx) center_z = gather_feat_idx(center_z, inds, batch_size, batch_idx) dim = gather_feat_idx(dim, inds, batch_size, batch_idx) spatial_indices = gather_feat_idx(spatial_indices, inds, batch_size, batch_idx) if not add_features is None: add_features = [gather_feat_idx(add_feature, inds, batch_size, batch_idx) for add_feature in add_features] if not isinstance(feature_map_stride, int): feature_map_stride = gather_feat_idx(feature_map_stride.unsqueeze(-1), inds, batch_size, batch_idx) angle = torch.atan2(rot_sin, rot_cos) xs = (spatial_indices[:, :, -1:] + center[:, :, 0:1]) * feature_map_stride * voxel_size[0] + point_cloud_range[0] ys = (spatial_indices[:, :, -2:-1] + center[:, :, 1:2]) * feature_map_stride * voxel_size[1] + point_cloud_range[1] #zs = (spatial_indices[:, :, 0:1]) * feature_map_stride * voxel_size[2] + point_cloud_range[2] + center_z box_part_list = [xs, ys, center_z, dim, angle] if not vel is None: vel = gather_feat_idx(vel, inds, batch_size, batch_idx) box_part_list.append(vel) if not iou is None: iou = gather_feat_idx(iou, inds, batch_size, batch_idx) iou = torch.clamp(iou, min=0, max=1.) final_box_preds = torch.cat((box_part_list), dim=-1) final_scores = scores.view(batch_size, K) final_class_ids = class_ids.view(batch_size, K) if not add_features is None: add_features = [add_feature.view(batch_size, K, add_feature.shape[-1]) for add_feature in add_features] assert post_center_limit_range is not None mask = (final_box_preds[..., :3] >= post_center_limit_range[:3]).all(2) mask &= (final_box_preds[..., :3] <= post_center_limit_range[3:]).all(2) if score_thresh is not None: mask &= (final_scores > score_thresh) ret_pred_dicts = [] for k in range(batch_size): cur_mask = mask[k] cur_boxes = final_box_preds[k, cur_mask] cur_scores = final_scores[k, cur_mask] cur_labels = final_class_ids[k, cur_mask] cur_add_features = [add_feature[k, cur_mask] for add_feature in add_features] if not add_features is None else None cur_iou = iou[k, cur_mask] if not iou is None else None ret_pred_dicts.append({ 'pred_boxes': cur_boxes, 'pred_scores': cur_scores, 'pred_labels': cur_labels, 'pred_ious': cur_iou, 'add_features': cur_add_features, }) return ret_pred_dicts def decode_bbox_from_pred_dicts(pred_dict, point_cloud_range=None, voxel_size=None, feature_map_stride=None): batch_size, _, H, W = pred_dict['center'].shape batch_center = pred_dict['center'].permute(0, 2, 3, 1).contiguous().view(batch_size, H*W, 2) # (B, H, W, 2) batch_center_z = pred_dict['center_z'].permute(0, 2, 3, 1).contiguous().view(batch_size, H*W, 1) # (B, H, W, 1) batch_dim = pred_dict['dim'].exp().permute(0, 2, 3, 1).contiguous().view(batch_size, H*W, 3) # (B, H, W, 3) batch_rot_cos = pred_dict['rot'][:, 0].unsqueeze(dim=1).permute(0, 2, 3, 1).contiguous().view(batch_size, H*W, 1) # (B, H, W, 1) batch_rot_sin = pred_dict['rot'][:, 1].unsqueeze(dim=1).permute(0, 2, 3, 1).contiguous().view(batch_size, H*W, 1) # (B, H, W, 1) batch_vel = pred_dict['vel'].permute(0, 2, 3, 1).contiguous().view(batch_size, H*W, 2) if 'vel' in pred_dict.keys() else None angle = torch.atan2(batch_rot_sin, batch_rot_cos) # (B, H*W, 1) ys, xs = torch.meshgrid([torch.arange(0, H, device=batch_center.device, dtype=batch_center.dtype), torch.arange(0, W, device=batch_center.device, dtype=batch_center.dtype)]) ys = ys.view(1, H, W).repeat(batch_size, 1, 1) xs = xs.view(1, H, W).repeat(batch_size, 1, 1) xs = xs.view(batch_size, -1, 1) + batch_center[:, :, 0:1] ys = ys.view(batch_size, -1, 1) + batch_center[:, :, 1:2] xs = xs * feature_map_stride * voxel_size[0] + point_cloud_range[0] ys = ys * feature_map_stride * voxel_size[1] + point_cloud_range[1] box_part_list = [xs, ys, batch_center_z, batch_dim, angle] if batch_vel is not None: box_part_list.append(batch_vel) box_preds = torch.cat((box_part_list), dim=-1).view(batch_size, H, W, -1) return box_preds