import torch import torch.nn as nn from torch.autograd import Function, Variable from . import pointnet2_stack_cuda as pointnet2 class BallQuery(Function): @staticmethod def forward(ctx, radius: float, nsample: int, xyz: torch.Tensor, xyz_batch_cnt: torch.Tensor, new_xyz: torch.Tensor, new_xyz_batch_cnt): """ Args: ctx: radius: float, radius of the balls nsample: int, maximum number of features in the balls xyz: (N1 + N2 ..., 3) xyz coordinates of the features xyz_batch_cnt: (batch_size), [N1, N2, ...] new_xyz: (M1 + M2 ..., 3) centers of the ball query new_xyz_batch_cnt: (batch_size), [M1, M2, ...] Returns: idx: (M1 + M2, nsample) tensor with the indicies of the features that form the query balls """ assert new_xyz.is_contiguous() assert new_xyz_batch_cnt.is_contiguous() assert xyz.is_contiguous() assert xyz_batch_cnt.is_contiguous() B = xyz_batch_cnt.shape[0] M = new_xyz.shape[0] idx = torch.cuda.IntTensor(M, nsample).zero_() pointnet2.ball_query_wrapper(B, M, radius, nsample, new_xyz, new_xyz_batch_cnt, xyz, xyz_batch_cnt, idx) empty_ball_mask = (idx[:, 0] == -1) idx[empty_ball_mask] = 0 ctx.mark_non_differentiable(idx) ctx.mark_non_differentiable(empty_ball_mask) return idx, empty_ball_mask @staticmethod def backward(ctx, a=None, b=None): return None, None, None, None, None, None ball_query = BallQuery.apply class GroupingOperation(Function): @staticmethod def forward(ctx, features: torch.Tensor, features_batch_cnt: torch.Tensor, idx: torch.Tensor, idx_batch_cnt: torch.Tensor): """ Args: ctx: features: (N1 + N2 ..., C) tensor of features to group features_batch_cnt: (batch_size) [N1 + N2 ...] tensor containing the indicies of features to group with idx: (M1 + M2 ..., nsample) tensor containing the indicies of features to group with idx_batch_cnt: (batch_size) [M1 + M2 ...] tensor containing the indicies of features to group with Returns: output: (M1 + M2, C, nsample) tensor """ assert features.is_contiguous() assert features_batch_cnt.is_contiguous() assert idx.is_contiguous() assert idx_batch_cnt.is_contiguous() assert features.shape[0] == features_batch_cnt.sum(), \ 'features: %s, features_batch_cnt: %s' % (str(features.shape), str(features_batch_cnt)) assert idx.shape[0] == idx_batch_cnt.sum(), \ 'idx: %s, idx_batch_cnt: %s' % (str(idx.shape), str(idx_batch_cnt)) M, nsample = idx.size() N, C = features.size() B = idx_batch_cnt.shape[0] output = torch.cuda.FloatTensor(M, C, nsample) pointnet2.group_points_wrapper(B, M, C, nsample, features, features_batch_cnt, idx, idx_batch_cnt, output) ctx.for_backwards = (B, N, idx, features_batch_cnt, idx_batch_cnt) return output @staticmethod def backward(ctx, grad_out: torch.Tensor): """ Args: ctx: grad_out: (M1 + M2 ..., C, nsample) tensor of the gradients of the output from forward Returns: grad_features: (N1 + N2 ..., C) gradient of the features """ B, N, idx, features_batch_cnt, idx_batch_cnt = ctx.for_backwards M, C, nsample = grad_out.size() grad_features = Variable(torch.cuda.FloatTensor(N, C).zero_()) grad_out_data = grad_out.data.contiguous() pointnet2.group_points_grad_wrapper(B, M, C, N, nsample, grad_out_data, idx, idx_batch_cnt, features_batch_cnt, grad_features.data) return grad_features, None, None, None grouping_operation = GroupingOperation.apply class QueryAndGroup(nn.Module): def __init__(self, radius: float, nsample: int, use_xyz: bool = True): """ Args: radius: float, radius of ball nsample: int, maximum number of features to gather in the ball use_xyz: """ super().__init__() self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz def forward(self, xyz: torch.Tensor, xyz_batch_cnt: torch.Tensor, new_xyz: torch.Tensor, new_xyz_batch_cnt: torch.Tensor, features: torch.Tensor = None): """ Args: xyz: (N1 + N2 ..., 3) xyz coordinates of the features xyz_batch_cnt: (batch_size), [N1, N2, ...] new_xyz: (M1 + M2 ..., 3) centers of the ball query new_xyz_batch_cnt: (batch_size), [M1, M2, ...] features: (N1 + N2 ..., C) tensor of features to group Returns: new_features: (M1 + M2, C, nsample) tensor """ assert xyz.shape[0] == xyz_batch_cnt.sum(), 'xyz: %s, xyz_batch_cnt: %s' % (str(xyz.shape), str(new_xyz_batch_cnt)) assert new_xyz.shape[0] == new_xyz_batch_cnt.sum(), \ 'new_xyz: %s, new_xyz_batch_cnt: %s' % (str(new_xyz.shape), str(new_xyz_batch_cnt)) # idx: (M1 + M2 ..., nsample), empty_ball_mask: (M1 + M2 ...) idx, empty_ball_mask = ball_query(self.radius, self.nsample, xyz, xyz_batch_cnt, new_xyz, new_xyz_batch_cnt) grouped_xyz = grouping_operation(xyz, xyz_batch_cnt, idx, new_xyz_batch_cnt) # (M1 + M2, 3, nsample) grouped_xyz -= new_xyz.unsqueeze(-1) grouped_xyz[empty_ball_mask] = 0 if features is not None: grouped_features = grouping_operation(features, xyz_batch_cnt, idx, new_xyz_batch_cnt) # (M1 + M2, C, nsample) grouped_features[empty_ball_mask] = 0 if self.use_xyz: new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (M1 + M2 ..., C + 3, nsample) else: new_features = grouped_features else: assert self.use_xyz, "Cannot have not features and not use xyz as a feature!" new_features = grouped_xyz return new_features, idx class FarthestPointSampling(Function): @staticmethod def forward(ctx, xyz: torch.Tensor, npoint: int): """ Args: ctx: xyz: (B, N, 3) where N > npoint npoint: int, number of features in the sampled set Returns: output: (B, npoint) tensor containing the set """ assert xyz.is_contiguous() B, N, _ = xyz.size() output = torch.cuda.IntTensor(B, npoint) temp = torch.cuda.FloatTensor(B, N).fill_(1e10) pointnet2.farthest_point_sampling_wrapper(B, N, npoint, xyz, temp, output) return output @staticmethod def backward(xyz, a=None): return None, None farthest_point_sample = furthest_point_sample = FarthestPointSampling.apply class StackFarthestPointSampling(Function): @staticmethod def forward(ctx, xyz, xyz_batch_cnt, npoint): """ Args: ctx: xyz: (N1 + N2 + ..., 3) where N > npoint xyz_batch_cnt: [N1, N2, ...] npoint: int, number of features in the sampled set Returns: output: (npoint.sum()) tensor containing the set, npoint: (M1, M2, ...) """ assert xyz.is_contiguous() and xyz.shape[1] == 3 batch_size = xyz_batch_cnt.__len__() if not isinstance(npoint, torch.Tensor): if not isinstance(npoint, list): npoint = [npoint for i in range(batch_size)] npoint = torch.tensor(npoint, device=xyz.device).int() N, _ = xyz.size() temp = torch.cuda.FloatTensor(N).fill_(1e10) output = torch.cuda.IntTensor(npoint.sum().item()) pointnet2.stack_farthest_point_sampling_wrapper(xyz, temp, xyz_batch_cnt, output, npoint) return output @staticmethod def backward(xyz, a=None): return None, None stack_farthest_point_sample = StackFarthestPointSampling.apply class ThreeNN(Function): @staticmethod def forward(ctx, unknown, unknown_batch_cnt, known, known_batch_cnt): """ Args: ctx: unknown: (N1 + N2..., 3) unknown_batch_cnt: (batch_size), [N1, N2, ...] known: (M1 + M2..., 3) known_batch_cnt: (batch_size), [M1, M2, ...] Returns: dist: (N1 + N2 ..., 3) l2 distance to the three nearest neighbors idx: (N1 + N2 ..., 3) index of the three nearest neighbors, range [0, M1+M2+...] """ assert unknown.shape.__len__() == 2 and unknown.shape[1] == 3 assert known.shape.__len__() == 2 and known.shape[1] == 3 assert unknown_batch_cnt.__len__() == known_batch_cnt.__len__() dist2 = unknown.new_zeros(unknown.shape) idx = unknown_batch_cnt.new_zeros(unknown.shape).int() pointnet2.three_nn_wrapper( unknown.contiguous(), unknown_batch_cnt.contiguous(), known.contiguous(), known_batch_cnt.contiguous(), dist2, idx ) return torch.sqrt(dist2), idx @staticmethod def backward(ctx, a=None, b=None): return None, None three_nn = ThreeNN.apply class ThreeInterpolate(Function): @staticmethod def forward(ctx, features: torch.Tensor, idx: torch.Tensor, weight: torch.Tensor): """ Args: ctx: features: (M1 + M2 ..., C) idx: [N1 + N2 ..., 3] weight: [N1 + N2 ..., 3] Returns: out_tensor: (N1 + N2 ..., C) """ assert idx.shape[0] == weight.shape[0] and idx.shape[1] == weight.shape[1] == 3 ctx.three_interpolate_for_backward = (idx, weight, features.shape[0]) output = features.new_zeros((idx.shape[0], features.shape[1])) pointnet2.three_interpolate_wrapper(features.contiguous(), idx.contiguous(), weight.contiguous(), output) return output @staticmethod def backward(ctx, grad_out: torch.Tensor): """ Args: ctx: grad_out: (N1 + N2 ..., C) Returns: grad_features: (M1 + M2 ..., C) """ idx, weight, M = ctx.three_interpolate_for_backward grad_features = grad_out.new_zeros((M, grad_out.shape[1])) pointnet2.three_interpolate_grad_wrapper( grad_out.contiguous(), idx.contiguous(), weight.contiguous(), grad_features ) return grad_features, None, None three_interpolate = ThreeInterpolate.apply class ThreeNNForVectorPoolByTwoStep(Function): @staticmethod def forward(ctx, support_xyz, xyz_batch_cnt, new_xyz, new_xyz_grid_centers, new_xyz_batch_cnt, max_neighbour_distance, nsample, neighbor_type, avg_length_of_neighbor_idxs, num_total_grids, neighbor_distance_multiplier): """ Args: ctx: // support_xyz: (N1 + N2 ..., 3) xyz coordinates of the features // xyz_batch_cnt: (batch_size), [N1, N2, ...] // new_xyz: (M1 + M2 ..., 3) centers of the ball query // new_xyz_grid_centers: (M1 + M2 ..., num_total_grids, 3) grids centers of each grid // new_xyz_batch_cnt: (batch_size), [M1, M2, ...] // nsample: find all (-1), find limited number(>0) // neighbor_type: 1: ball, others: cube // neighbor_distance_multiplier: query_distance = neighbor_distance_multiplier * max_neighbour_distance Returns: // new_xyz_grid_idxs: (M1 + M2 ..., num_total_grids, 3) three-nn // new_xyz_grid_dist2: (M1 + M2 ..., num_total_grids, 3) square of dist of three-nn """ num_new_xyz = new_xyz.shape[0] new_xyz_grid_dist2 = new_xyz_grid_centers.new_zeros(new_xyz_grid_centers.shape) new_xyz_grid_idxs = new_xyz_grid_centers.new_zeros(new_xyz_grid_centers.shape).int().fill_(-1) while True: num_max_sum_points = avg_length_of_neighbor_idxs * num_new_xyz stack_neighbor_idxs = new_xyz_grid_idxs.new_zeros(num_max_sum_points) start_len = new_xyz_grid_idxs.new_zeros(num_new_xyz, 2).int() cumsum = new_xyz_grid_idxs.new_zeros(1) pointnet2.query_stacked_local_neighbor_idxs_wrapper_stack( support_xyz.contiguous(), xyz_batch_cnt.contiguous(), new_xyz.contiguous(), new_xyz_batch_cnt.contiguous(), stack_neighbor_idxs.contiguous(), start_len.contiguous(), cumsum, avg_length_of_neighbor_idxs, max_neighbour_distance * neighbor_distance_multiplier, nsample, neighbor_type ) avg_length_of_neighbor_idxs = cumsum[0].item() // num_new_xyz + int(cumsum[0].item() % num_new_xyz > 0) if cumsum[0] <= num_max_sum_points: break stack_neighbor_idxs = stack_neighbor_idxs[:cumsum[0]] pointnet2.query_three_nn_by_stacked_local_idxs_wrapper_stack( support_xyz, new_xyz, new_xyz_grid_centers, new_xyz_grid_idxs, new_xyz_grid_dist2, stack_neighbor_idxs, start_len, num_new_xyz, num_total_grids ) return torch.sqrt(new_xyz_grid_dist2), new_xyz_grid_idxs, torch.tensor(avg_length_of_neighbor_idxs) three_nn_for_vector_pool_by_two_step = ThreeNNForVectorPoolByTwoStep.apply class VectorPoolWithVoxelQuery(Function): @staticmethod def forward(ctx, support_xyz: torch.Tensor, xyz_batch_cnt: torch.Tensor, support_features: torch.Tensor, new_xyz: torch.Tensor, new_xyz_batch_cnt: torch.Tensor, num_grid_x, num_grid_y, num_grid_z, max_neighbour_distance, num_c_out_each_grid, use_xyz, num_mean_points_per_grid=100, nsample=-1, neighbor_type=0, pooling_type=0): """ Args: ctx: support_xyz: (N1 + N2 ..., 3) xyz coordinates of the features xyz_batch_cnt: (batch_size), [N1, N2, ...] support_features: (N1 + N2 ..., C) new_xyz: (M1 + M2 ..., 3) centers of new positions new_xyz_batch_cnt: (batch_size), [M1, M2, ...] num_grid_x: number of grids in each local area centered at new_xyz num_grid_y: num_grid_z: max_neighbour_distance: num_c_out_each_grid: use_xyz: neighbor_type: 1: ball, others: cube: pooling_type: 0: avg_pool, 1: random choice Returns: new_features: (M1 + M2 ..., num_c_out) """ assert support_xyz.is_contiguous() assert support_features.is_contiguous() assert xyz_batch_cnt.is_contiguous() assert new_xyz.is_contiguous() assert new_xyz_batch_cnt.is_contiguous() num_total_grids = num_grid_x * num_grid_y * num_grid_z num_c_out = num_c_out_each_grid * num_total_grids N, num_c_in = support_features.shape M = new_xyz.shape[0] assert num_c_in % num_c_out_each_grid == 0, \ f'the input channels ({num_c_in}) should be an integral multiple of num_c_out_each_grid({num_c_out_each_grid})' while True: new_features = support_features.new_zeros((M, num_c_out)) new_local_xyz = support_features.new_zeros((M, 3 * num_total_grids)) point_cnt_of_grid = xyz_batch_cnt.new_zeros((M, num_total_grids)) num_max_sum_points = num_mean_points_per_grid * M grouped_idxs = xyz_batch_cnt.new_zeros((num_max_sum_points, 3)) num_cum_sum = pointnet2.vector_pool_wrapper( support_xyz, xyz_batch_cnt, support_features, new_xyz, new_xyz_batch_cnt, new_features, new_local_xyz, point_cnt_of_grid, grouped_idxs, num_grid_x, num_grid_y, num_grid_z, max_neighbour_distance, use_xyz, num_max_sum_points, nsample, neighbor_type, pooling_type ) num_mean_points_per_grid = num_cum_sum // M + int(num_cum_sum % M > 0) if num_cum_sum <= num_max_sum_points: break grouped_idxs = grouped_idxs[:num_cum_sum] normalizer = torch.clamp_min(point_cnt_of_grid[:, :, None].float(), min=1e-6) new_features = (new_features.view(-1, num_total_grids, num_c_out_each_grid) / normalizer).view(-1, num_c_out) if use_xyz: new_local_xyz = (new_local_xyz.view(-1, num_total_grids, 3) / normalizer).view(-1, num_total_grids * 3) num_mean_points_per_grid = torch.Tensor([num_mean_points_per_grid]).int() nsample = torch.Tensor([nsample]).int() ctx.vector_pool_for_backward = (point_cnt_of_grid, grouped_idxs, N, num_c_in) ctx.mark_non_differentiable(new_local_xyz, num_mean_points_per_grid, nsample, point_cnt_of_grid) return new_features, new_local_xyz, num_mean_points_per_grid, point_cnt_of_grid @staticmethod def backward(ctx, grad_new_features: torch.Tensor, grad_local_xyz: torch.Tensor, grad_num_cum_sum, grad_point_cnt_of_grid): """ Args: ctx: grad_new_features: (M1 + M2 ..., num_c_out), num_c_out = num_c_out_each_grid * num_total_grids Returns: grad_support_features: (N1 + N2 ..., C_in) """ point_cnt_of_grid, grouped_idxs, N, num_c_in = ctx.vector_pool_for_backward grad_support_features = grad_new_features.new_zeros((N, num_c_in)) if grouped_idxs.shape[0] > 0: pointnet2.vector_pool_grad_wrapper( grad_new_features.contiguous(), point_cnt_of_grid, grouped_idxs, grad_support_features ) return None, None, grad_support_features, None, None, None, None, None, None, None, None, None, None, None, None vector_pool_with_voxel_query_op = VectorPoolWithVoxelQuery.apply if __name__ == '__main__': pass