import numpy as np def get_calib_from_file(calib_file): with open(calib_file) as f: lines = f.readlines() obj = lines[2].strip().split(' ')[1:] P2 = np.array(obj, dtype=np.float32) obj = lines[3].strip().split(' ')[1:] P3 = np.array(obj, dtype=np.float32) obj = lines[4].strip().split(' ')[1:] R0 = np.array(obj, dtype=np.float32) obj = lines[5].strip().split(' ')[1:] Tr_velo_to_cam = np.array(obj, dtype=np.float32) return {'P2': P2.reshape(3, 4), 'P3': P3.reshape(3, 4), 'R0': R0.reshape(3, 3), 'Tr_velo2cam': Tr_velo_to_cam.reshape(3, 4)} class Calibration(object): def __init__(self, calib_file): if not isinstance(calib_file, dict): calib = get_calib_from_file(calib_file) else: calib = calib_file self.P2 = calib['P2'] # 3 x 4 self.R0 = calib['R0'] # 3 x 3 self.V2C = calib['Tr_velo2cam'] # 3 x 4 # Camera intrinsics and extrinsics self.cu = self.P2[0, 2] self.cv = self.P2[1, 2] self.fu = self.P2[0, 0] self.fv = self.P2[1, 1] self.tx = self.P2[0, 3] / (-self.fu) self.ty = self.P2[1, 3] / (-self.fv) def cart_to_hom(self, pts): """ :param pts: (N, 3 or 2) :return pts_hom: (N, 4 or 3) """ pts_hom = np.hstack((pts, np.ones((pts.shape[0], 1), dtype=np.float32))) return pts_hom def rect_to_lidar(self, pts_rect): """ :param pts_lidar: (N, 3) :return pts_rect: (N, 3) """ pts_rect_hom = self.cart_to_hom(pts_rect) # (N, 4) R0_ext = np.hstack((self.R0, np.zeros((3, 1), dtype=np.float32))) # (3, 4) R0_ext = np.vstack((R0_ext, np.zeros((1, 4), dtype=np.float32))) # (4, 4) R0_ext[3, 3] = 1 V2C_ext = np.vstack((self.V2C, np.zeros((1, 4), dtype=np.float32))) # (4, 4) V2C_ext[3, 3] = 1 pts_lidar = np.dot(pts_rect_hom, np.linalg.inv(np.dot(R0_ext, V2C_ext).T)) return pts_lidar[:, 0:3] def lidar_to_rect(self, pts_lidar): """ :param pts_lidar: (N, 3) :return pts_rect: (N, 3) """ pts_lidar_hom = self.cart_to_hom(pts_lidar) pts_rect = np.dot(pts_lidar_hom, np.dot(self.V2C.T, self.R0.T)) # pts_rect = reduce(np.dot, (pts_lidar_hom, self.V2C.T, self.R0.T)) return pts_rect def rect_to_img(self, pts_rect): """ :param pts_rect: (N, 3) :return pts_img: (N, 2) """ pts_rect_hom = self.cart_to_hom(pts_rect) pts_2d_hom = np.dot(pts_rect_hom, self.P2.T) pts_img = (pts_2d_hom[:, 0:2].T / pts_rect_hom[:, 2]).T # (N, 2) pts_rect_depth = pts_2d_hom[:, 2] - self.P2.T[3, 2] # depth in rect camera coord return pts_img, pts_rect_depth def lidar_to_img(self, pts_lidar): """ :param pts_lidar: (N, 3) :return pts_img: (N, 2) """ pts_rect = self.lidar_to_rect(pts_lidar) pts_img, pts_depth = self.rect_to_img(pts_rect) return pts_img, pts_depth def img_to_rect(self, u, v, depth_rect): """ :param u: (N) :param v: (N) :param depth_rect: (N) :return: """ x = ((u - self.cu) * depth_rect) / self.fu + self.tx y = ((v - self.cv) * depth_rect) / self.fv + self.ty pts_rect = np.concatenate((x.reshape(-1, 1), y.reshape(-1, 1), depth_rect.reshape(-1, 1)), axis=1) return pts_rect def corners3d_to_img_boxes(self, corners3d): """ :param corners3d: (N, 8, 3) corners in rect coordinate :return: boxes: (None, 4) [x1, y1, x2, y2] in rgb coordinate :return: boxes_corner: (None, 8) [xi, yi] in rgb coordinate """ sample_num = corners3d.shape[0] corners3d_hom = np.concatenate((corners3d, np.ones((sample_num, 8, 1))), axis=2) # (N, 8, 4) img_pts = np.matmul(corners3d_hom, self.P2.T) # (N, 8, 3) x, y = img_pts[:, :, 0] / img_pts[:, :, 2], img_pts[:, :, 1] / img_pts[:, :, 2] x1, y1 = np.min(x, axis=1), np.min(y, axis=1) x2, y2 = np.max(x, axis=1), np.max(y, axis=1) boxes = np.concatenate((x1.reshape(-1, 1), y1.reshape(-1, 1), x2.reshape(-1, 1), y2.reshape(-1, 1)), axis=1) boxes_corner = np.concatenate((x.reshape(-1, 8, 1), y.reshape(-1, 8, 1)), axis=2) return boxes, boxes_corner