import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from . import box_utils from pcdet.ops.iou3d_nms import iou3d_nms_utils class SigmoidFocalClassificationLoss(nn.Module): """ Sigmoid focal cross entropy loss. """ def __init__(self, gamma: float = 2.0, alpha: float = 0.25): """ Args: gamma: Weighting parameter to balance loss for hard and easy examples. alpha: Weighting parameter to balance loss for positive and negative examples. """ super(SigmoidFocalClassificationLoss, self).__init__() self.alpha = alpha self.gamma = gamma @staticmethod def sigmoid_cross_entropy_with_logits(input: torch.Tensor, target: torch.Tensor): """ PyTorch Implementation for tf.nn.sigmoid_cross_entropy_with_logits: max(x, 0) - x * z + log(1 + exp(-abs(x))) in https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits Args: input: (B, #anchors, #classes) float tensor. Predicted logits for each class target: (B, #anchors, #classes) float tensor. One-hot encoded classification targets Returns: loss: (B, #anchors, #classes) float tensor. Sigmoid cross entropy loss without reduction """ loss = torch.clamp(input, min=0) - input * target + \ torch.log1p(torch.exp(-torch.abs(input))) return loss def forward(self, input: torch.Tensor, target: torch.Tensor, weights: torch.Tensor): """ Args: input: (B, #anchors, #classes) float tensor. Predicted logits for each class target: (B, #anchors, #classes) float tensor. One-hot encoded classification targets weights: (B, #anchors) float tensor. Anchor-wise weights. Returns: weighted_loss: (B, #anchors, #classes) float tensor after weighting. """ pred_sigmoid = torch.sigmoid(input) alpha_weight = target * self.alpha + (1 - target) * (1 - self.alpha) pt = target * (1.0 - pred_sigmoid) + (1.0 - target) * pred_sigmoid focal_weight = alpha_weight * torch.pow(pt, self.gamma) bce_loss = self.sigmoid_cross_entropy_with_logits(input, target) loss = focal_weight * bce_loss if weights.shape.__len__() == 2 or \ (weights.shape.__len__() == 1 and target.shape.__len__() == 2): weights = weights.unsqueeze(-1) assert weights.shape.__len__() == loss.shape.__len__() return loss * weights class WeightedSmoothL1Loss(nn.Module): """ Code-wise Weighted Smooth L1 Loss modified based on fvcore.nn.smooth_l1_loss https://github.com/facebookresearch/fvcore/blob/master/fvcore/nn/smooth_l1_loss.py | 0.5 * x ** 2 / beta if abs(x) < beta smoothl1(x) = | | abs(x) - 0.5 * beta otherwise, where x = input - target. """ def __init__(self, beta: float = 1.0 / 9.0, code_weights: list = None): """ Args: beta: Scalar float. L1 to L2 change point. For beta values < 1e-5, L1 loss is computed. code_weights: (#codes) float list if not None. Code-wise weights. """ super(WeightedSmoothL1Loss, self).__init__() self.beta = beta if code_weights is not None: self.code_weights = np.array(code_weights, dtype=np.float32) self.code_weights = torch.from_numpy(self.code_weights).cuda() @staticmethod def smooth_l1_loss(diff, beta): if beta < 1e-5: loss = torch.abs(diff) else: n = torch.abs(diff) loss = torch.where(n < beta, 0.5 * n ** 2 / beta, n - 0.5 * beta) return loss def forward(self, input: torch.Tensor, target: torch.Tensor, weights: torch.Tensor = None): """ Args: input: (B, #anchors, #codes) float tensor. Ecoded predicted locations of objects. target: (B, #anchors, #codes) float tensor. Regression targets. weights: (B, #anchors) float tensor if not None. Returns: loss: (B, #anchors) float tensor. Weighted smooth l1 loss without reduction. """ target = torch.where(torch.isnan(target), input, target) # ignore nan targets diff = input - target # code-wise weighting if self.code_weights is not None: diff = diff * self.code_weights.view(1, 1, -1) loss = self.smooth_l1_loss(diff, self.beta) # anchor-wise weighting if weights is not None: assert weights.shape[0] == loss.shape[0] and weights.shape[1] == loss.shape[1] loss = loss * weights.unsqueeze(-1) return loss class WeightedL1Loss(nn.Module): def __init__(self, code_weights: list = None): """ Args: code_weights: (#codes) float list if not None. Code-wise weights. """ super(WeightedL1Loss, self).__init__() if code_weights is not None: self.code_weights = np.array(code_weights, dtype=np.float32) self.code_weights = torch.from_numpy(self.code_weights).cuda() @torch.cuda.amp.custom_fwd(cast_inputs=torch.float16) def forward(self, input: torch.Tensor, target: torch.Tensor, weights: torch.Tensor = None): """ Args: input: (B, #anchors, #codes) float tensor. Ecoded predicted locations of objects. target: (B, #anchors, #codes) float tensor. Regression targets. weights: (B, #anchors) float tensor if not None. Returns: loss: (B, #anchors) float tensor. Weighted smooth l1 loss without reduction. """ target = torch.where(torch.isnan(target), input, target) # ignore nan targets diff = input - target # code-wise weighting if self.code_weights is not None: diff = diff * self.code_weights.view(1, 1, -1) loss = torch.abs(diff) # anchor-wise weighting if weights is not None: assert weights.shape[0] == loss.shape[0] and weights.shape[1] == loss.shape[1] loss = loss * weights.unsqueeze(-1) return loss class WeightedCrossEntropyLoss(nn.Module): """ Transform input to fit the fomation of PyTorch offical cross entropy loss with anchor-wise weighting. """ def __init__(self): super(WeightedCrossEntropyLoss, self).__init__() def forward(self, input: torch.Tensor, target: torch.Tensor, weights: torch.Tensor): """ Args: input: (B, #anchors, #classes) float tensor. Predited logits for each class. target: (B, #anchors, #classes) float tensor. One-hot classification targets. weights: (B, #anchors) float tensor. Anchor-wise weights. Returns: loss: (B, #anchors) float tensor. Weighted cross entropy loss without reduction """ input = input.permute(0, 2, 1) target = target.argmax(dim=-1) loss = F.cross_entropy(input, target, reduction='none') * weights return loss def get_corner_loss_lidar(pred_bbox3d: torch.Tensor, gt_bbox3d: torch.Tensor): """ Args: pred_bbox3d: (N, 7) float Tensor. gt_bbox3d: (N, 7) float Tensor. Returns: corner_loss: (N) float Tensor. """ assert pred_bbox3d.shape[0] == gt_bbox3d.shape[0] pred_box_corners = box_utils.boxes_to_corners_3d(pred_bbox3d) gt_box_corners = box_utils.boxes_to_corners_3d(gt_bbox3d) gt_bbox3d_flip = gt_bbox3d.clone() gt_bbox3d_flip[:, 6] += np.pi gt_box_corners_flip = box_utils.boxes_to_corners_3d(gt_bbox3d_flip) # (N, 8) corner_dist = torch.min(torch.norm(pred_box_corners - gt_box_corners, dim=2), torch.norm(pred_box_corners - gt_box_corners_flip, dim=2)) # (N, 8) corner_loss = WeightedSmoothL1Loss.smooth_l1_loss(corner_dist, beta=1.0) return corner_loss.mean(dim=1) def compute_fg_mask(gt_boxes2d, shape, downsample_factor=1, device=torch.device("cpu")): """ Compute foreground mask for images Args: gt_boxes2d: (B, N, 4), 2D box labels shape: torch.Size or tuple, Foreground mask desired shape downsample_factor: int, Downsample factor for image device: torch.device, Foreground mask desired device Returns: fg_mask (shape), Foreground mask """ fg_mask = torch.zeros(shape, dtype=torch.bool, device=device) # Set box corners gt_boxes2d /= downsample_factor gt_boxes2d[:, :, :2] = torch.floor(gt_boxes2d[:, :, :2]) gt_boxes2d[:, :, 2:] = torch.ceil(gt_boxes2d[:, :, 2:]) gt_boxes2d = gt_boxes2d.long() # Set all values within each box to True B, N = gt_boxes2d.shape[:2] for b in range(B): for n in range(N): u1, v1, u2, v2 = gt_boxes2d[b, n] fg_mask[b, v1:v2, u1:u2] = True return fg_mask def neg_loss_cornernet(pred, gt, mask=None): """ Refer to https://github.com/tianweiy/CenterPoint. Modified focal loss. Exactly the same as CornerNet. Runs faster and costs a little bit more memory Args: pred: (batch x c x h x w) gt: (batch x c x h x w) mask: (batch x h x w) Returns: """ pos_inds = gt.eq(1).float() neg_inds = gt.lt(1).float() neg_weights = torch.pow(1 - gt, 4) loss = 0 pos_loss = torch.log(pred) * torch.pow(1 - pred, 2) * pos_inds neg_loss = torch.log(1 - pred) * torch.pow(pred, 2) * neg_weights * neg_inds if mask is not None: mask = mask[:, None, :, :].float() pos_loss = pos_loss * mask neg_loss = neg_loss * mask num_pos = (pos_inds.float() * mask).sum() else: num_pos = pos_inds.float().sum() pos_loss = pos_loss.sum() neg_loss = neg_loss.sum() if num_pos == 0: loss = loss - neg_loss else: loss = loss - (pos_loss + neg_loss) / num_pos return loss def neg_loss_sparse(pred, gt): """ Refer to https://github.com/tianweiy/CenterPoint. Modified focal loss. Exactly the same as CornerNet. Runs faster and costs a little bit more memory Args: pred: (batch x c x n) gt: (batch x c x n) Returns: """ pos_inds = gt.eq(1).float() neg_inds = gt.lt(1).float() neg_weights = torch.pow(1 - gt, 4) loss = 0 pos_loss = torch.log(pred) * torch.pow(1 - pred, 2) * pos_inds neg_loss = torch.log(1 - pred) * torch.pow(pred, 2) * neg_weights * neg_inds num_pos = pos_inds.float().sum() pos_loss = pos_loss.sum() neg_loss = neg_loss.sum() if num_pos == 0: loss = loss - neg_loss else: loss = loss - (pos_loss + neg_loss) / num_pos return loss class FocalLossCenterNet(nn.Module): """ Refer to https://github.com/tianweiy/CenterPoint """ def __init__(self): super(FocalLossCenterNet, self).__init__() self.neg_loss = neg_loss_cornernet def forward(self, out, target, mask=None): return self.neg_loss(out, target, mask=mask) def _reg_loss(regr, gt_regr, mask): """ Refer to https://github.com/tianweiy/CenterPoint L1 regression loss Args: regr (batch x max_objects x dim) gt_regr (batch x max_objects x dim) mask (batch x max_objects) Returns: """ num = mask.float().sum() mask = mask.unsqueeze(2).expand_as(gt_regr).float() isnotnan = (~ torch.isnan(gt_regr)).float() mask *= isnotnan regr = regr * mask gt_regr = gt_regr * mask loss = torch.abs(regr - gt_regr) loss = loss.transpose(2, 0) loss = torch.sum(loss, dim=2) loss = torch.sum(loss, dim=1) # else: # # D x M x B # loss = loss.reshape(loss.shape[0], -1) # loss = loss / (num + 1e-4) loss = loss / torch.clamp_min(num, min=1.0) # import pdb; pdb.set_trace() return loss def _gather_feat(feat, ind, mask=None): dim = feat.size(2) ind = ind.unsqueeze(2).expand(ind.size(0), ind.size(1), dim) feat = feat.gather(1, ind) if mask is not None: mask = mask.unsqueeze(2).expand_as(feat) feat = feat[mask] feat = feat.view(-1, dim) return feat def _transpose_and_gather_feat(feat, ind): feat = feat.permute(0, 2, 3, 1).contiguous() feat = feat.view(feat.size(0), -1, feat.size(3)) feat = _gather_feat(feat, ind) return feat class RegLossCenterNet(nn.Module): """ Refer to https://github.com/tianweiy/CenterPoint """ def __init__(self): super(RegLossCenterNet, self).__init__() def forward(self, output, mask, ind=None, target=None): """ Args: output: (batch x dim x h x w) or (batch x max_objects) mask: (batch x max_objects) ind: (batch x max_objects) target: (batch x max_objects x dim) Returns: """ if ind is None: pred = output else: pred = _transpose_and_gather_feat(output, ind) loss = _reg_loss(pred, target, mask) return loss class FocalLossSparse(nn.Module): """ Refer to https://github.com/tianweiy/CenterPoint """ def __init__(self): super(FocalLossSparse, self).__init__() self.neg_loss = neg_loss_sparse def forward(self, out, target): return self.neg_loss(out, target) class RegLossSparse(nn.Module): """ Refer to https://github.com/tianweiy/CenterPoint """ def __init__(self): super(RegLossSparse, self).__init__() def forward(self, output, mask, ind=None, target=None, batch_index=None): """ Args: output: (N x dim) mask: (batch x max_objects) ind: (batch x max_objects) target: (batch x max_objects x dim) Returns: """ pred = [] batch_size = mask.shape[0] for bs_idx in range(batch_size): batch_inds = batch_index==bs_idx pred.append(output[batch_inds][ind[bs_idx]]) pred = torch.stack(pred) loss = _reg_loss(pred, target, mask) return loss class IouLossSparse(nn.Module): '''IouLoss loss for an output tensor Arguments: output (batch x dim x h x w) mask (batch x max_objects) ind (batch x max_objects) target (batch x max_objects x dim) ''' def __init__(self): super(IouLossSparse, self).__init__() def forward(self, iou_pred, mask, ind, box_pred, box_gt, batch_index): if mask.sum() == 0: return iou_pred.new_zeros((1)) batch_size = mask.shape[0] mask = mask.bool() loss = 0 for bs_idx in range(batch_size): batch_inds = batch_index==bs_idx pred = iou_pred[batch_inds][ind[bs_idx]][mask[bs_idx]] pred_box = box_pred[batch_inds][ind[bs_idx]][mask[bs_idx]] target = iou3d_nms_utils.boxes_aligned_iou3d_gpu(pred_box, box_gt[bs_idx]) target = 2 * target - 1 loss += F.l1_loss(pred, target, reduction='sum') loss = loss / (mask.sum() + 1e-4) return loss class IouRegLossSparse(nn.Module): '''Distance IoU loss for output boxes Arguments: output (batch x dim x h x w) mask (batch x max_objects) ind (batch x max_objects) target (batch x max_objects x dim) ''' def __init__(self, type="DIoU"): super(IouRegLossSparse, self).__init__() def center_to_corner2d(self, center, dim): corners_norm = torch.tensor([[-0.5, -0.5], [-0.5, 0.5], [0.5, 0.5], [0.5, -0.5]], dtype=torch.float32, device=dim.device) corners = dim.view([-1, 1, 2]) * corners_norm.view([1, 4, 2]) corners = corners + center.view(-1, 1, 2) return corners def bbox3d_iou_func(self, pred_boxes, gt_boxes): assert pred_boxes.shape[0] == gt_boxes.shape[0] qcorners = self.center_to_corner2d(pred_boxes[:, :2], pred_boxes[:, 3:5]) gcorners = self.center_to_corner2d(gt_boxes[:, :2], gt_boxes[:, 3:5]) inter_max_xy = torch.minimum(qcorners[:, 2], gcorners[:, 2]) inter_min_xy = torch.maximum(qcorners[:, 0], gcorners[:, 0]) out_max_xy = torch.maximum(qcorners[:, 2], gcorners[:, 2]) out_min_xy = torch.minimum(qcorners[:, 0], gcorners[:, 0]) # calculate area volume_pred_boxes = pred_boxes[:, 3] * pred_boxes[:, 4] * pred_boxes[:, 5] volume_gt_boxes = gt_boxes[:, 3] * gt_boxes[:, 4] * gt_boxes[:, 5] inter_h = torch.minimum(pred_boxes[:, 2] + 0.5 * pred_boxes[:, 5], gt_boxes[:, 2] + 0.5 * gt_boxes[:, 5]) - \ torch.maximum(pred_boxes[:, 2] - 0.5 * pred_boxes[:, 5], gt_boxes[:, 2] - 0.5 * gt_boxes[:, 5]) inter_h = torch.clamp(inter_h, min=0) inter = torch.clamp((inter_max_xy - inter_min_xy), min=0) volume_inter = inter[:, 0] * inter[:, 1] * inter_h volume_union = volume_gt_boxes + volume_pred_boxes - volume_inter # boxes_iou3d_gpu(pred_boxes, gt_boxes) inter_diag = torch.pow(gt_boxes[:, 0:3] - pred_boxes[:, 0:3], 2).sum(-1) outer_h = torch.maximum(gt_boxes[:, 2] + 0.5 * gt_boxes[:, 5], pred_boxes[:, 2] + 0.5 * pred_boxes[:, 5]) - \ torch.minimum(gt_boxes[:, 2] - 0.5 * gt_boxes[:, 5], pred_boxes[:, 2] - 0.5 * pred_boxes[:, 5]) outer_h = torch.clamp(outer_h, min=0) outer = torch.clamp((out_max_xy - out_min_xy), min=0) outer_diag = outer[:, 0] ** 2 + outer[:, 1] ** 2 + outer_h ** 2 dious = volume_inter / volume_union - inter_diag / outer_diag dious = torch.clamp(dious, min=-1.0, max=1.0) return dious def forward(self, box_pred, mask, ind, box_gt, batch_index): if mask.sum() == 0: return box_pred.new_zeros((1)) mask = mask.bool() batch_size = mask.shape[0] loss = 0 for bs_idx in range(batch_size): batch_inds = batch_index==bs_idx pred_box = box_pred[batch_inds][ind[bs_idx]] iou = self.bbox3d_iou_func(pred_box[mask[bs_idx]], box_gt[bs_idx]) loss += (1. - iou).sum() loss = loss / (mask.sum() + 1e-4) return loss class L1Loss(nn.Module): def __init__(self): super(L1Loss, self).__init__() def forward(self, pred, target): if target.numel() == 0: return pred.sum() * 0 assert pred.size() == target.size() loss = torch.abs(pred - target) return loss class GaussianFocalLoss(nn.Module): """GaussianFocalLoss is a variant of focal loss. More details can be found in the `paper `_ Code is modified from `kp_utils.py `_ # noqa: E501 Please notice that the target in GaussianFocalLoss is a gaussian heatmap, not 0/1 binary target. Args: alpha (float): Power of prediction. gamma (float): Power of target for negative samples. reduction (str): Options are "none", "mean" and "sum". loss_weight (float): Loss weight of current loss. """ def __init__(self, alpha=2.0, gamma=4.0): super(GaussianFocalLoss, self).__init__() self.alpha = alpha self.gamma = gamma def forward(self, pred, target): eps = 1e-12 pos_weights = target.eq(1) neg_weights = (1 - target).pow(self.gamma) pos_loss = -(pred + eps).log() * (1 - pred).pow(self.alpha) * pos_weights neg_loss = -(1 - pred + eps).log() * pred.pow(self.alpha) * neg_weights return pos_loss + neg_loss def calculate_iou_loss_centerhead(iou_preds, batch_box_preds, mask, ind, gt_boxes): """ Args: iou_preds: (batch x 1 x h x w) batch_box_preds: (batch x (7 or 9) x h x w) mask: (batch x max_objects) ind: (batch x max_objects) gt_boxes: (batch x N, 7 or 9) Returns: """ if mask.sum() == 0: return iou_preds.new_zeros((1)) mask = mask.bool() selected_iou_preds = _transpose_and_gather_feat(iou_preds, ind)[mask] selected_box_preds = _transpose_and_gather_feat(batch_box_preds, ind)[mask] iou_target = iou3d_nms_utils.paired_boxes_iou3d_gpu(selected_box_preds[:, 0:7], gt_boxes[mask][:, 0:7]) # iou_target = iou3d_nms_utils.boxes_iou3d_gpu(selected_box_preds[:, 0:7].clone(), gt_boxes[mask][:, 0:7].clone()).diag() iou_target = iou_target * 2 - 1 # [0, 1] ==> [-1, 1] # print(selected_iou_preds.view(-1), iou_target) loss = F.l1_loss(selected_iou_preds.view(-1), iou_target, reduction='sum') loss = loss / torch.clamp(mask.sum(), min=1e-4) return loss def calculate_iou_reg_loss_centerhead(batch_box_preds, mask, ind, gt_boxes): if mask.sum() == 0: return batch_box_preds.new_zeros((1)) mask = mask.bool() selected_box_preds = _transpose_and_gather_feat(batch_box_preds, ind) iou = box_utils.bbox3d_overlaps_diou(selected_box_preds[mask][:, 0:7], gt_boxes[mask][:, 0:7]) loss = (1.0 - iou).sum() / torch.clamp(mask.sum(), min=1e-4) return loss