CLASS_NAMES: ['Regular_vehicle', 'Pedestrian', 'Bicyclist', 'Motorcyclist', 'Wheeled_rider', 'Bollard', 'Construction_cone', 'Sign', 'Construction_barrel', 'Stop_sign', 'Mobile_pedestrian_crossing_sign', 'Large_vehicle', 'Bus', 'Box_truck', 'Truck', 'Vehicular_trailer', 'Truck_cab', 'School_bus', 'Articulated_bus', 'Message_board_trailer', 'Bicycle', 'Motorcycle', 'Wheeled_device', 'Wheelchair', 'Stroller', 'Dog'] DATA_CONFIG: _BASE_CONFIG_: cfgs/dataset_configs/argo2_dataset.yaml DATA_PROCESSOR: - NAME: mask_points_and_boxes_outside_range REMOVE_OUTSIDE_BOXES: True - NAME: shuffle_points SHUFFLE_ENABLED: { 'train': True, 'test': True } - NAME: transform_points_to_voxels VOXEL_SIZE: [0.1, 0.1, 0.2] MAX_POINTS_PER_VOXEL: 20 MAX_NUMBER_OF_VOXELS: { 'train': 120000, 'test': 160000 } MODEL: NAME: VoxelNeXt VFE: NAME: MeanVFE BACKBONE_3D: NAME: VoxelResBackBone8xVoxelNeXt DENSE_HEAD: NAME: VoxelNeXtHead CLASS_AGNOSTIC: False INPUT_FEATURES: 128 CLASS_NAMES_EACH_HEAD: [ ['Regular_vehicle',], ['Pedestrian', 'Bicyclist', 'Motorcyclist', 'Wheeled_rider'], ['Bollard', 'Construction_cone', 'Sign', 'Construction_barrel', 'Stop_sign', 'Mobile_pedestrian_crossing_sign'], ['Large_vehicle', 'Bus', 'Box_truck', 'Truck', 'Vehicular_trailer', 'Truck_cab', 'School_bus', 'Articulated_bus', 'Message_board_trailer'], ['Bicycle', 'Motorcycle', 'Wheeled_device', 'Wheelchair', 'Stroller'], ['Dog'], ] KERNEL_SIZE_HEAD: 1 SHARED_CONV_CHANNEL: 128 USE_BIAS_BEFORE_NORM: True NUM_HM_CONV: 2 SEPARATE_HEAD_CFG: HEAD_ORDER: ['center', 'center_z', 'dim', 'rot'] HEAD_DICT: { 'center': {'out_channels': 2, 'num_conv': 2}, 'center_z': {'out_channels': 1, 'num_conv': 2}, 'dim': {'out_channels': 3, 'num_conv': 2}, 'rot': {'out_channels': 2, 'num_conv': 2}, } TARGET_ASSIGNER_CONFIG: FEATURE_MAP_STRIDE: 8 NUM_MAX_OBJS: 500 GAUSSIAN_OVERLAP: 0.1 MIN_RADIUS: 2 LOSS_CONFIG: LOSS_WEIGHTS: { 'cls_weight': 1.0, 'loc_weight': 0.25, 'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2] } POST_PROCESSING: SCORE_THRESH: 0.1 POST_CENTER_LIMIT_RANGE: [-200, -200, -20, 200, 200, 20] MAX_OBJ_PER_SAMPLE: 500 NMS_CONFIG: NMS_TYPE: nms_gpu NMS_THRESH: 0.2 NMS_PRE_MAXSIZE: 1000 NMS_POST_MAXSIZE: 83 POST_PROCESSING: RECALL_THRESH_LIST: [0.3, 0.5, 0.7] EVAL_METRIC: kitti OPTIMIZATION: BATCH_SIZE_PER_GPU: 4 NUM_EPOCHS: 6 OPTIMIZER: adam_onecycle LR: 0.003 WEIGHT_DECAY: 0.01 MOMENTUM: 0.9 MOMS: [0.95, 0.85] PCT_START: 0.4 DIV_FACTOR: 10 DECAY_STEP_LIST: [35, 45] LR_DECAY: 0.1 LR_CLIP: 0.0000001 LR_WARMUP: False WARMUP_EPOCH: 1 GRAD_NORM_CLIP: 10