DATASET: 'PandasetDataset' DATA_PATH: '../data/pandaset' POINT_CLOUD_RANGE: [-70, -40, -3, 70, 40, 1] # xmin, ymin, zmin, xmax, ymax, zmax DATA_SPLIT: { 'train': train, 'test': val } SEQUENCES: { 'train': ['014', '050', '079', '048', '093', '091', '063', '104', '100', '092', '012', '047', '018', '006', '099', '085', '035', '041', '052', '105', '030', '113', '002', '084', '028', '119', '044', '005', '102', '034', '077', '064', '067', '058', '019', '015', '037', '095', '120', '066', '023', '071', '117', '098', '139', '038', '116', '046', '088', '089', '040', '033', '016', '024', '122', '039', '158', '069', '124', '123', '106'], # ~60% of the sequences, randomly chosen 'val': ['045', '059', '055', '051', '020', '097', '073', '043', '003', '101', '027', '056', '011', '078', '080', '109', '042', '021', '094', '057'], # ~20% of the sequences, randomly chosen 'test': ['074', '004', '086', '062', '068', '008', '001', '110', '053', '115', '054', '065', '017', '103', '072', '013', '029', '090', '112', '149', '070', '032'] # ~20% of the sequences, randomly chosen } # Acquisition device to consider when loading the data # Pandaset contains data from: # - a pandar64 spinning lidar # - a pandarGT forward facing lidar # To use data from: # - the pandar64 lidar only (default), set LIDAR_DEVICE to 0, # - the pandarGT lidar onlu, set it to 1 # - both devices, set it to -1 LIDAR_DEVICE: 0 INFO_PATH: { 'train': [pandaset_infos_train.pkl], 'test': [pandaset_infos_val.pkl], } TRAINING_CATEGORIES: { # This maps raw dataset categories with the corresponding categories used in training # This map can be incomplete. In case a category is not present, the category # for training is the same as the raw dataset category 'Car': 'Car', 'Pickup Truck': 'Car', 'Medium-sized Truck': 'Truck', 'Semi-truck': 'Truck', 'Towed Object': 'Other Vehicle', 'Motorcycle': 'Motorcycle', 'Other Vehicle - Construction Vehicle': 'Other Vehicle', 'Other Vehicle - Uncommon': 'Other Vehicle', 'Other Vehicle - Pedicab': 'Other Vehicle', 'Emergency Vehicle': 'Other Vehicle', 'Bus': 'Bus', 'Bicycle': 'Bicycle', 'Pedestrian': 'Pedestrian', 'Pedestrian with Object': 'Pedestrian', 'Animals - Other': 'Animal' } FOV_POINTS_ONLY: False DATA_AUGMENTOR: DISABLE_AUG_LIST: ['placeholder'] AUG_CONFIG_LIST: # gt sampling not working at the moment - NAME: gt_sampling USE_ROAD_PLANE: False DB_INFO_PATH: - pandaset_dbinfos_train.pkl PREPARE: { filter_by_min_points: ['Car:5', 'Pedestrian:5', 'Bicycle:5'], filter_by_difficulty: [-1], } SAMPLE_GROUPS: ['Car:20','Pedestrian:15', 'Bicycle:15'] NUM_POINT_FEATURES: 4 DATABASE_WITH_FAKELIDAR: False REMOVE_EXTRA_WIDTH: [0.0, 0.0, 0.0] LIMIT_WHOLE_SCENE: True - NAME: random_world_flip ALONG_AXIS_LIST: ['x', 'y'] - NAME: random_world_rotation WORLD_ROT_ANGLE: [-3.14159265, 3.114159265] - NAME: random_world_scaling WORLD_SCALE_RANGE: [0.95, 1.05] POINT_FEATURE_ENCODING: { encoding_type: absolute_coordinates_encoding, used_feature_list: ['x', 'y', 'z', 'intensity'], src_feature_list: ['x', 'y', 'z', 'intensity'], } DATA_PROCESSOR: - NAME: mask_points_and_boxes_outside_range REMOVE_OUTSIDE_BOXES: True - NAME: shuffle_points SHUFFLE_ENABLED: { 'train': True, 'test': False } - NAME: transform_points_to_voxels VOXEL_SIZE: [0.05, 0.05, 0.1] MAX_POINTS_PER_VOXEL: 5 MAX_NUMBER_OF_VOXELS: { 'train': 16000, 'test': 40000 }