from functools import partial import torch.nn as nn import torch.optim as optim import torch.optim.lr_scheduler as lr_sched from .fastai_optim import OptimWrapper from .learning_schedules_fastai import CosineWarmupLR, OneCycle, CosineAnnealing def build_optimizer(model, optim_cfg): if optim_cfg.OPTIMIZER == 'adam': optimizer = optim.Adam(model.parameters(), lr=optim_cfg.LR, weight_decay=optim_cfg.WEIGHT_DECAY) elif optim_cfg.OPTIMIZER == 'sgd': optimizer = optim.SGD( model.parameters(), lr=optim_cfg.LR, weight_decay=optim_cfg.WEIGHT_DECAY, momentum=optim_cfg.MOMENTUM ) elif optim_cfg.OPTIMIZER in ['adam_onecycle','adam_cosineanneal']: def children(m: nn.Module): return list(m.children()) def num_children(m: nn.Module) -> int: return len(children(m)) flatten_model = lambda m: sum(map(flatten_model, m.children()), []) if num_children(m) else [m] get_layer_groups = lambda m: [nn.Sequential(*flatten_model(m))] betas = optim_cfg.get('BETAS', (0.9, 0.99)) betas = tuple(betas) optimizer_func = partial(optim.Adam, betas=betas) optimizer = OptimWrapper.create( optimizer_func, 3e-3, get_layer_groups(model), wd=optim_cfg.WEIGHT_DECAY, true_wd=True, bn_wd=True ) else: raise NotImplementedError return optimizer def build_scheduler(optimizer, total_iters_each_epoch, total_epochs, last_epoch, optim_cfg): decay_steps = [x * total_iters_each_epoch for x in optim_cfg.DECAY_STEP_LIST] def lr_lbmd(cur_epoch): cur_decay = 1 for decay_step in decay_steps: if cur_epoch >= decay_step: cur_decay = cur_decay * optim_cfg.LR_DECAY return max(cur_decay, optim_cfg.LR_CLIP / optim_cfg.LR) lr_warmup_scheduler = None total_steps = total_iters_each_epoch * total_epochs if optim_cfg.OPTIMIZER == 'adam_onecycle': lr_scheduler = OneCycle( optimizer, total_steps, optim_cfg.LR, list(optim_cfg.MOMS), optim_cfg.DIV_FACTOR, optim_cfg.PCT_START ) elif optim_cfg.OPTIMIZER == 'adam_cosineanneal': lr_scheduler = CosineAnnealing( optimizer, total_steps, total_epochs, optim_cfg.LR, list(optim_cfg.MOMS), optim_cfg.PCT_START, optim_cfg.WARMUP_ITER ) else: lr_scheduler = lr_sched.LambdaLR(optimizer, lr_lbmd, last_epoch=last_epoch) if optim_cfg.LR_WARMUP: lr_warmup_scheduler = CosineWarmupLR( optimizer, T_max=optim_cfg.WARMUP_EPOCH * len(total_iters_each_epoch), eta_min=optim_cfg.LR / optim_cfg.DIV_FACTOR ) return lr_scheduler, lr_warmup_scheduler