/* Stacked-batch-data version of point interpolation, modified from the original implementation of official PointNet++ codes. Written by Shaoshuai Shi All Rights Reserved 2019-2020. */ #include #include #include #include #include #include #include #include "interpolate_gpu.h" #define CHECK_CUDA(x) do { \ if (!x.type().is_cuda()) { \ fprintf(stderr, "%s must be CUDA tensor at %s:%d\n", #x, __FILE__, __LINE__); \ exit(-1); \ } \ } while (0) #define CHECK_CONTIGUOUS(x) do { \ if (!x.is_contiguous()) { \ fprintf(stderr, "%s must be contiguous tensor at %s:%d\n", #x, __FILE__, __LINE__); \ exit(-1); \ } \ } while (0) #define CHECK_INPUT(x) CHECK_CUDA(x);CHECK_CONTIGUOUS(x) void three_nn_wrapper_stack(at::Tensor unknown_tensor, at::Tensor unknown_batch_cnt_tensor, at::Tensor known_tensor, at::Tensor known_batch_cnt_tensor, at::Tensor dist2_tensor, at::Tensor idx_tensor){ // unknown: (N1 + N2 ..., 3) // unknown_batch_cnt: (batch_size), [N1, N2, ...] // known: (M1 + M2 ..., 3) // known_batch_cnt: (batch_size), [M1, M2, ...] // Return: // dist: (N1 + N2 ..., 3) l2 distance to the three nearest neighbors // idx: (N1 + N2 ..., 3) index of the three nearest neighbors CHECK_INPUT(unknown_tensor); CHECK_INPUT(unknown_batch_cnt_tensor); CHECK_INPUT(known_tensor); CHECK_INPUT(known_batch_cnt_tensor); CHECK_INPUT(dist2_tensor); CHECK_INPUT(idx_tensor); int batch_size = unknown_batch_cnt_tensor.size(0); int N = unknown_tensor.size(0); int M = known_tensor.size(0); const float *unknown = unknown_tensor.data(); const int *unknown_batch_cnt = unknown_batch_cnt_tensor.data(); const float *known = known_tensor.data(); const int *known_batch_cnt = known_batch_cnt_tensor.data(); float *dist2 = dist2_tensor.data(); int *idx = idx_tensor.data(); three_nn_kernel_launcher_stack(batch_size, N, M, unknown, unknown_batch_cnt, known, known_batch_cnt, dist2, idx); } void three_interpolate_wrapper_stack(at::Tensor features_tensor, at::Tensor idx_tensor, at::Tensor weight_tensor, at::Tensor out_tensor) { // features_tensor: (M1 + M2 ..., C) // idx_tensor: [N1 + N2 ..., 3] // weight_tensor: [N1 + N2 ..., 3] // Return: // out_tensor: (N1 + N2 ..., C) CHECK_INPUT(features_tensor); CHECK_INPUT(idx_tensor); CHECK_INPUT(weight_tensor); CHECK_INPUT(out_tensor); int N = out_tensor.size(0); int channels = features_tensor.size(1); const float *features = features_tensor.data(); const float *weight = weight_tensor.data(); const int *idx = idx_tensor.data(); float *out = out_tensor.data(); three_interpolate_kernel_launcher_stack(N, channels, features, idx, weight, out); } void three_interpolate_grad_wrapper_stack(at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor weight_tensor, at::Tensor grad_features_tensor) { // grad_out_tensor: (N1 + N2 ..., C) // idx_tensor: [N1 + N2 ..., 3] // weight_tensor: [N1 + N2 ..., 3] // Return: // grad_features_tensor: (M1 + M2 ..., C) CHECK_INPUT(grad_out_tensor); CHECK_INPUT(idx_tensor); CHECK_INPUT(weight_tensor); CHECK_INPUT(grad_features_tensor); int N = grad_out_tensor.size(0); int channels = grad_out_tensor.size(1); const float *grad_out = grad_out_tensor.data(); const float *weight = weight_tensor.data(); const int *idx = idx_tensor.data(); float *grad_features = grad_features_tensor.data(); // printf("N=%d, channels=%d\n", N, channels); three_interpolate_grad_kernel_launcher_stack(N, channels, grad_out, idx, weight, grad_features); }