import numpy as np import math import copy from ...utils import common_utils from ...utils import box_utils def random_flip_along_x(gt_boxes, points, return_flip=False, enable=None): """ Args: gt_boxes: (N, 7 + C), [x, y, z, dx, dy, dz, heading, [vx], [vy]] points: (M, 3 + C) Returns: """ if enable is None: enable = np.random.choice([False, True], replace=False, p=[0.5, 0.5]) if enable: gt_boxes[:, 1] = -gt_boxes[:, 1] gt_boxes[:, 6] = -gt_boxes[:, 6] points[:, 1] = -points[:, 1] if gt_boxes.shape[1] > 7: gt_boxes[:, 8] = -gt_boxes[:, 8] if return_flip: return gt_boxes, points, enable return gt_boxes, points def random_flip_along_y(gt_boxes, points, return_flip=False, enable=None): """ Args: gt_boxes: (N, 7 + C), [x, y, z, dx, dy, dz, heading, [vx], [vy]] points: (M, 3 + C) Returns: """ if enable is None: enable = np.random.choice([False, True], replace=False, p=[0.5, 0.5]) if enable: gt_boxes[:, 0] = -gt_boxes[:, 0] gt_boxes[:, 6] = -(gt_boxes[:, 6] + np.pi) points[:, 0] = -points[:, 0] if gt_boxes.shape[1] > 7: gt_boxes[:, 7] = -gt_boxes[:, 7] if return_flip: return gt_boxes, points, enable return gt_boxes, points def global_rotation(gt_boxes, points, rot_range, return_rot=False, noise_rotation=None): """ Args: gt_boxes: (N, 7 + C), [x, y, z, dx, dy, dz, heading, [vx], [vy]] points: (M, 3 + C), rot_range: [min, max] Returns: """ if noise_rotation is None: noise_rotation = np.random.uniform(rot_range[0], rot_range[1]) points = common_utils.rotate_points_along_z(points[np.newaxis, :, :], np.array([noise_rotation]))[0] gt_boxes[:, 0:3] = common_utils.rotate_points_along_z(gt_boxes[np.newaxis, :, 0:3], np.array([noise_rotation]))[0] gt_boxes[:, 6] += noise_rotation if gt_boxes.shape[1] > 7: gt_boxes[:, 7:9] = common_utils.rotate_points_along_z( np.hstack((gt_boxes[:, 7:9], np.zeros((gt_boxes.shape[0], 1))))[np.newaxis, :, :], np.array([noise_rotation]) )[0][:, 0:2] if return_rot: return gt_boxes, points, noise_rotation return gt_boxes, points def global_scaling(gt_boxes, points, scale_range, return_scale=False): """ Args: gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading] points: (M, 3 + C), scale_range: [min, max] Returns: """ if scale_range[1] - scale_range[0] < 1e-3: return gt_boxes, points noise_scale = np.random.uniform(scale_range[0], scale_range[1]) points[:, :3] *= noise_scale gt_boxes[:, :6] *= noise_scale if gt_boxes.shape[1] > 7: gt_boxes[:, 7:] *= noise_scale if return_scale: return gt_boxes, points, noise_scale return gt_boxes, points def global_scaling_with_roi_boxes(gt_boxes, roi_boxes, points, scale_range, return_scale=False): """ Args: gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading] points: (M, 3 + C), scale_range: [min, max] Returns: """ if scale_range[1] - scale_range[0] < 1e-3: return gt_boxes, points noise_scale = np.random.uniform(scale_range[0], scale_range[1]) points[:, :3] *= noise_scale gt_boxes[:, :6] *= noise_scale roi_boxes[:,:, [0,1,2,3,4,5,7,8]] *= noise_scale if return_scale: return gt_boxes,roi_boxes, points, noise_scale return gt_boxes, roi_boxes, points def random_image_flip_horizontal(image, depth_map, gt_boxes, calib): """ Performs random horizontal flip augmentation Args: image: (H_image, W_image, 3), Image depth_map: (H_depth, W_depth), Depth map gt_boxes: (N, 7), 3D box labels in LiDAR coordinates [x, y, z, w, l, h, ry] calib: calibration.Calibration, Calibration object Returns: aug_image: (H_image, W_image, 3), Augmented image aug_depth_map: (H_depth, W_depth), Augmented depth map aug_gt_boxes: (N, 7), Augmented 3D box labels in LiDAR coordinates [x, y, z, w, l, h, ry] """ # Randomly augment with 50% chance enable = np.random.choice([False, True], replace=False, p=[0.5, 0.5]) if enable: # Flip images aug_image = np.fliplr(image) aug_depth_map = np.fliplr(depth_map) # Flip 3D gt_boxes by flipping the centroids in image space aug_gt_boxes = copy.copy(gt_boxes) locations = aug_gt_boxes[:, :3] img_pts, img_depth = calib.lidar_to_img(locations) W = image.shape[1] img_pts[:, 0] = W - img_pts[:, 0] pts_rect = calib.img_to_rect(u=img_pts[:, 0], v=img_pts[:, 1], depth_rect=img_depth) pts_lidar = calib.rect_to_lidar(pts_rect) aug_gt_boxes[:, :3] = pts_lidar aug_gt_boxes[:, 6] = -1 * aug_gt_boxes[:, 6] else: aug_image = image aug_depth_map = depth_map aug_gt_boxes = gt_boxes return aug_image, aug_depth_map, aug_gt_boxes def random_local_translation_along_x(gt_boxes, points, offset_range): """ Args: gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading, [vx], [vy]] points: (M, 3 + C), offset_range: [min max]] Returns: """ # augs = {} for idx, box in enumerate(gt_boxes): offset = np.random.uniform(offset_range[0], offset_range[1]) # augs[f'object_{idx}'] = offset points_in_box, mask = get_points_in_box(points, box) points[mask, 0] += offset gt_boxes[idx, 0] += offset # if gt_boxes.shape[1] > 7: # gt_boxes[idx, 7] += offset return gt_boxes, points def random_local_translation_along_y(gt_boxes, points, offset_range): """ Args: gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading, [vx], [vy]] points: (M, 3 + C), offset_range: [min max]] Returns: """ # augs = {} for idx, box in enumerate(gt_boxes): offset = np.random.uniform(offset_range[0], offset_range[1]) # augs[f'object_{idx}'] = offset points_in_box, mask = get_points_in_box(points, box) points[mask, 1] += offset gt_boxes[idx, 1] += offset # if gt_boxes.shape[1] > 8: # gt_boxes[idx, 8] += offset return gt_boxes, points def random_local_translation_along_z(gt_boxes, points, offset_range): """ Args: gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading, [vx], [vy]] points: (M, 3 + C), offset_range: [min max]] Returns: """ # augs = {} for idx, box in enumerate(gt_boxes): offset = np.random.uniform(offset_range[0], offset_range[1]) # augs[f'object_{idx}'] = offset points_in_box, mask = get_points_in_box(points, box) points[mask, 2] += offset gt_boxes[idx, 2] += offset return gt_boxes, points def global_frustum_dropout_top(gt_boxes, points, intensity_range): """ Args: gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading, [vx], [vy]], points: (M, 3 + C), intensity: [min, max] Returns: """ intensity = np.random.uniform(intensity_range[0], intensity_range[1]) # threshold = max - length * uniform(0 ~ 0.2) threshold = np.max(points[:, 2]) - intensity * (np.max(points[:, 2]) - np.min(points[:, 2])) points = points[points[:, 2] < threshold] gt_boxes = gt_boxes[gt_boxes[:, 2] < threshold] return gt_boxes, points def global_frustum_dropout_bottom(gt_boxes, points, intensity_range): """ Args: gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading, [vx], [vy]], points: (M, 3 + C), intensity: [min, max] Returns: """ intensity = np.random.uniform(intensity_range[0], intensity_range[1]) threshold = np.min(points[:, 2]) + intensity * (np.max(points[:, 2]) - np.min(points[:, 2])) points = points[points[:, 2] > threshold] gt_boxes = gt_boxes[gt_boxes[:, 2] > threshold] return gt_boxes, points def global_frustum_dropout_left(gt_boxes, points, intensity_range): """ Args: gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading, [vx], [vy]], points: (M, 3 + C), intensity: [min, max] Returns: """ intensity = np.random.uniform(intensity_range[0], intensity_range[1]) threshold = np.max(points[:, 1]) - intensity * (np.max(points[:, 1]) - np.min(points[:, 1])) points = points[points[:, 1] < threshold] gt_boxes = gt_boxes[gt_boxes[:, 1] < threshold] return gt_boxes, points def global_frustum_dropout_right(gt_boxes, points, intensity_range): """ Args: gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading, [vx], [vy]], points: (M, 3 + C), intensity: [min, max] Returns: """ intensity = np.random.uniform(intensity_range[0], intensity_range[1]) threshold = np.min(points[:, 1]) + intensity * (np.max(points[:, 1]) - np.min(points[:, 1])) points = points[points[:, 1] > threshold] gt_boxes = gt_boxes[gt_boxes[:, 1] > threshold] return gt_boxes, points def local_scaling(gt_boxes, points, scale_range): """ Args: gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading] points: (M, 3 + C), scale_range: [min, max] Returns: """ if scale_range[1] - scale_range[0] < 1e-3: return gt_boxes, points # augs = {} for idx, box in enumerate(gt_boxes): noise_scale = np.random.uniform(scale_range[0], scale_range[1]) # augs[f'object_{idx}'] = noise_scale points_in_box, mask = get_points_in_box(points, box) # tranlation to axis center points[mask, 0] -= box[0] points[mask, 1] -= box[1] points[mask, 2] -= box[2] # apply scaling points[mask, :3] *= noise_scale # tranlation back to original position points[mask, 0] += box[0] points[mask, 1] += box[1] points[mask, 2] += box[2] gt_boxes[idx, 3:6] *= noise_scale return gt_boxes, points def local_rotation(gt_boxes, points, rot_range): """ Args: gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading, [vx], [vy]] points: (M, 3 + C), rot_range: [min, max] Returns: """ # augs = {} for idx, box in enumerate(gt_boxes): noise_rotation = np.random.uniform(rot_range[0], rot_range[1]) # augs[f'object_{idx}'] = noise_rotation points_in_box, mask = get_points_in_box(points, box) centroid_x = box[0] centroid_y = box[1] centroid_z = box[2] # tranlation to axis center points[mask, 0] -= centroid_x points[mask, 1] -= centroid_y points[mask, 2] -= centroid_z box[0] -= centroid_x box[1] -= centroid_y box[2] -= centroid_z # apply rotation points[mask, :] = common_utils.rotate_points_along_z(points[np.newaxis, mask, :], np.array([noise_rotation]))[0] box[0:3] = common_utils.rotate_points_along_z(box[np.newaxis, np.newaxis, 0:3], np.array([noise_rotation]))[0][0] # tranlation back to original position points[mask, 0] += centroid_x points[mask, 1] += centroid_y points[mask, 2] += centroid_z box[0] += centroid_x box[1] += centroid_y box[2] += centroid_z gt_boxes[idx, 6] += noise_rotation if gt_boxes.shape[1] > 8: gt_boxes[idx, 7:9] = common_utils.rotate_points_along_z( np.hstack((gt_boxes[idx, 7:9], np.zeros((gt_boxes.shape[0], 1))))[np.newaxis, :, :], np.array([noise_rotation]) )[0][:, 0:2] return gt_boxes, points def local_frustum_dropout_top(gt_boxes, points, intensity_range): """ Args: gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading, [vx], [vy]], points: (M, 3 + C), intensity: [min, max] Returns: """ for idx, box in enumerate(gt_boxes): x, y, z, dx, dy, dz = box[0], box[1], box[2], box[3], box[4], box[5] intensity = np.random.uniform(intensity_range[0], intensity_range[1]) points_in_box, mask = get_points_in_box(points, box) threshold = (z + dz / 2) - intensity * dz points = points[np.logical_not(np.logical_and(mask, points[:, 2] >= threshold))] return gt_boxes, points def local_frustum_dropout_bottom(gt_boxes, points, intensity_range): """ Args: gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading, [vx], [vy]], points: (M, 3 + C), intensity: [min, max] Returns: """ for idx, box in enumerate(gt_boxes): x, y, z, dx, dy, dz = box[0], box[1], box[2], box[3], box[4], box[5] intensity = np.random.uniform(intensity_range[0], intensity_range[1]) points_in_box, mask = get_points_in_box(points, box) threshold = (z - dz / 2) + intensity * dz points = points[np.logical_not(np.logical_and(mask, points[:, 2] <= threshold))] return gt_boxes, points def local_frustum_dropout_left(gt_boxes, points, intensity_range): """ Args: gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading, [vx], [vy]], points: (M, 3 + C), intensity: [min, max] Returns: """ for idx, box in enumerate(gt_boxes): x, y, z, dx, dy, dz = box[0], box[1], box[2], box[3], box[4], box[5] intensity = np.random.uniform(intensity_range[0], intensity_range[1]) points_in_box, mask = get_points_in_box(points, box) threshold = (y + dy / 2) - intensity * dy points = points[np.logical_not(np.logical_and(mask, points[:, 1] >= threshold))] return gt_boxes, points def local_frustum_dropout_right(gt_boxes, points, intensity_range): """ Args: gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading, [vx], [vy]], points: (M, 3 + C), intensity: [min, max] Returns: """ for idx, box in enumerate(gt_boxes): x, y, z, dx, dy, dz = box[0], box[1], box[2], box[3], box[4], box[5] intensity = np.random.uniform(intensity_range[0], intensity_range[1]) points_in_box, mask = get_points_in_box(points, box) threshold = (y - dy / 2) + intensity * dy points = points[np.logical_not(np.logical_and(mask, points[:, 1] <= threshold))] return gt_boxes, points def get_points_in_box(points, gt_box): x, y, z = points[:, 0], points[:, 1], points[:, 2] cx, cy, cz = gt_box[0], gt_box[1], gt_box[2] dx, dy, dz, rz = gt_box[3], gt_box[4], gt_box[5], gt_box[6] shift_x, shift_y, shift_z = x - cx, y - cy, z - cz MARGIN = 1e-1 cosa, sina = math.cos(-rz), math.sin(-rz) local_x = shift_x * cosa + shift_y * (-sina) local_y = shift_x * sina + shift_y * cosa mask = np.logical_and(abs(shift_z) <= dz / 2.0, np.logical_and(abs(local_x) <= dx / 2.0 + MARGIN, abs(local_y) <= dy / 2.0 + MARGIN)) points = points[mask] return points, mask def get_pyramids(boxes): pyramid_orders = np.array([ [0, 1, 5, 4], [4, 5, 6, 7], [7, 6, 2, 3], [3, 2, 1, 0], [1, 2, 6, 5], [0, 4, 7, 3] ]) boxes_corners = box_utils.boxes_to_corners_3d(boxes).reshape(-1, 24) pyramid_list = [] for order in pyramid_orders: # frustum polygon: 5 corners, 5 surfaces pyramid = np.concatenate(( boxes[:, 0:3], boxes_corners[:, 3 * order[0]: 3 * order[0] + 3], boxes_corners[:, 3 * order[1]: 3 * order[1] + 3], boxes_corners[:, 3 * order[2]: 3 * order[2] + 3], boxes_corners[:, 3 * order[3]: 3 * order[3] + 3]), axis=1) pyramid_list.append(pyramid[:, None, :]) pyramids = np.concatenate(pyramid_list, axis=1) # [N, 6, 15], 15=5*3 return pyramids def one_hot(x, num_class=1): if num_class is None: num_class = 1 ohx = np.zeros((len(x), num_class)) ohx[range(len(x)), x] = 1 return ohx def points_in_pyramids_mask(points, pyramids): pyramids = pyramids.reshape(-1, 5, 3) flags = np.zeros((points.shape[0], pyramids.shape[0]), dtype=np.bool) for i, pyramid in enumerate(pyramids): flags[:, i] = np.logical_or(flags[:, i], box_utils.in_hull(points[:, 0:3], pyramid)) return flags def local_pyramid_dropout(gt_boxes, points, dropout_prob, pyramids=None): if pyramids is None: pyramids = get_pyramids(gt_boxes).reshape([-1, 6, 5, 3]) # each six surface of boxes: [num_boxes, 6, 15=3*5] drop_pyramid_indices = np.random.randint(0, 6, (pyramids.shape[0])) drop_pyramid_one_hot = one_hot(drop_pyramid_indices, num_class=6) drop_box_mask = np.random.uniform(0, 1, (pyramids.shape[0])) <= dropout_prob if np.sum(drop_box_mask) != 0: drop_pyramid_mask = (np.tile(drop_box_mask[:, None], [1, 6]) * drop_pyramid_one_hot) > 0 drop_pyramids = pyramids[drop_pyramid_mask] point_masks = points_in_pyramids_mask(points, drop_pyramids) points = points[np.logical_not(point_masks.any(-1))] # print(drop_box_mask) pyramids = pyramids[np.logical_not(drop_box_mask)] return gt_boxes, points, pyramids def local_pyramid_sparsify(gt_boxes, points, prob, max_num_pts, pyramids=None): if pyramids is None: pyramids = get_pyramids(gt_boxes).reshape([-1, 6, 5, 3]) # each six surface of boxes: [num_boxes, 6, 15=3*5] if pyramids.shape[0] > 0: sparsity_prob, sparsity_num = prob, max_num_pts sparsify_pyramid_indices = np.random.randint(0, 6, (pyramids.shape[0])) sparsify_pyramid_one_hot = one_hot(sparsify_pyramid_indices, num_class=6) sparsify_box_mask = np.random.uniform(0, 1, (pyramids.shape[0])) <= sparsity_prob sparsify_pyramid_mask = (np.tile(sparsify_box_mask[:, None], [1, 6]) * sparsify_pyramid_one_hot) > 0 # print(sparsify_box_mask) pyramid_sampled = pyramids[sparsify_pyramid_mask] # (-1,6,5,3)[(num_sample,6)] # print(pyramid_sampled.shape) pyramid_sampled_point_masks = points_in_pyramids_mask(points, pyramid_sampled) pyramid_sampled_points_num = pyramid_sampled_point_masks.sum(0) # the number of points in each surface pyramid valid_pyramid_sampled_mask = pyramid_sampled_points_num > sparsity_num # only much than sparsity_num should be sparse sparsify_pyramids = pyramid_sampled[valid_pyramid_sampled_mask] if sparsify_pyramids.shape[0] > 0: point_masks = pyramid_sampled_point_masks[:, valid_pyramid_sampled_mask] remain_points = points[ np.logical_not(point_masks.any(-1))] # points which outside the down sampling pyramid to_sparsify_points = [points[point_masks[:, i]] for i in range(point_masks.shape[1])] sparsified_points = [] for sample in to_sparsify_points: sampled_indices = np.random.choice(sample.shape[0], size=sparsity_num, replace=False) sparsified_points.append(sample[sampled_indices]) sparsified_points = np.concatenate(sparsified_points, axis=0) points = np.concatenate([remain_points, sparsified_points], axis=0) pyramids = pyramids[np.logical_not(sparsify_box_mask)] return gt_boxes, points, pyramids def local_pyramid_swap(gt_boxes, points, prob, max_num_pts, pyramids=None): def get_points_ratio(points, pyramid): surface_center = (pyramid[3:6] + pyramid[6:9] + pyramid[9:12] + pyramid[12:]) / 4.0 vector_0, vector_1, vector_2 = pyramid[6:9] - pyramid[3:6], pyramid[12:] - pyramid[3:6], pyramid[0:3] - surface_center alphas = ((points[:, 0:3] - pyramid[3:6]) * vector_0).sum(-1) / np.power(vector_0, 2).sum() betas = ((points[:, 0:3] - pyramid[3:6]) * vector_1).sum(-1) / np.power(vector_1, 2).sum() gammas = ((points[:, 0:3] - surface_center) * vector_2).sum(-1) / np.power(vector_2, 2).sum() return [alphas, betas, gammas] def recover_points_by_ratio(points_ratio, pyramid): alphas, betas, gammas = points_ratio surface_center = (pyramid[3:6] + pyramid[6:9] + pyramid[9:12] + pyramid[12:]) / 4.0 vector_0, vector_1, vector_2 = pyramid[6:9] - pyramid[3:6], pyramid[12:] - pyramid[3:6], pyramid[0:3] - surface_center points = (alphas[:, None] * vector_0 + betas[:, None] * vector_1) + pyramid[3:6] + gammas[:, None] * vector_2 return points def recover_points_intensity_by_ratio(points_intensity_ratio, max_intensity, min_intensity): return points_intensity_ratio * (max_intensity - min_intensity) + min_intensity # swap partition if pyramids is None: pyramids = get_pyramids(gt_boxes).reshape([-1, 6, 5, 3]) # each six surface of boxes: [num_boxes, 6, 15=3*5] swap_prob, num_thres = prob, max_num_pts swap_pyramid_mask = np.random.uniform(0, 1, (pyramids.shape[0])) <= swap_prob if swap_pyramid_mask.sum() > 0: point_masks = points_in_pyramids_mask(points, pyramids) point_nums = point_masks.sum(0).reshape(pyramids.shape[0], -1) # [N, 6] non_zero_pyramids_mask = point_nums > num_thres # ingore dropout pyramids or highly occluded pyramids selected_pyramids = non_zero_pyramids_mask * swap_pyramid_mask[:, None] # selected boxes and all their valid pyramids # print(selected_pyramids) if selected_pyramids.sum() > 0: # get to_swap pyramids index_i, index_j = np.nonzero(selected_pyramids) selected_pyramid_indices = [np.random.choice(index_j[index_i == i]) \ if e and (index_i == i).any() else 0 for i, e in enumerate(swap_pyramid_mask)] selected_pyramids_mask = selected_pyramids * one_hot(selected_pyramid_indices, num_class=6) == 1 to_swap_pyramids = pyramids[selected_pyramids_mask] # get swapped pyramids index_i, index_j = np.nonzero(selected_pyramids_mask) non_zero_pyramids_mask[selected_pyramids_mask] = False swapped_index_i = np.array([np.random.choice(np.where(non_zero_pyramids_mask[:, j])[0]) if \ np.where(non_zero_pyramids_mask[:, j])[0].shape[0] > 0 else index_i[i] for i, j in enumerate(index_j.tolist())]) swapped_indicies = np.concatenate([swapped_index_i[:, None], index_j[:, None]], axis=1) swapped_pyramids = pyramids[ swapped_indicies[:, 0].astype(np.int32), swapped_indicies[:, 1].astype(np.int32)] # concat to_swap&swapped pyramids swap_pyramids = np.concatenate([to_swap_pyramids, swapped_pyramids], axis=0) swap_point_masks = points_in_pyramids_mask(points, swap_pyramids) remain_points = points[np.logical_not(swap_point_masks.any(-1))] # swap pyramids points_res = [] num_swapped_pyramids = swapped_pyramids.shape[0] for i in range(num_swapped_pyramids): to_swap_pyramid = to_swap_pyramids[i] swapped_pyramid = swapped_pyramids[i] to_swap_points = points[swap_point_masks[:, i]] swapped_points = points[swap_point_masks[:, i + num_swapped_pyramids]] # for intensity transform to_swap_points_intensity_ratio = (to_swap_points[:, -1:] - to_swap_points[:, -1:].min()) / \ np.clip( (to_swap_points[:, -1:].max() - to_swap_points[:, -1:].min()), 1e-6, 1) swapped_points_intensity_ratio = (swapped_points[:, -1:] - swapped_points[:, -1:].min()) / \ np.clip( (swapped_points[:, -1:].max() - swapped_points[:, -1:].min()), 1e-6, 1) to_swap_points_ratio = get_points_ratio(to_swap_points, to_swap_pyramid.reshape(15)) swapped_points_ratio = get_points_ratio(swapped_points, swapped_pyramid.reshape(15)) new_to_swap_points = recover_points_by_ratio(swapped_points_ratio, to_swap_pyramid.reshape(15)) new_swapped_points = recover_points_by_ratio(to_swap_points_ratio, swapped_pyramid.reshape(15)) # for intensity transform new_to_swap_points_intensity = recover_points_intensity_by_ratio( swapped_points_intensity_ratio, to_swap_points[:, -1:].max(), to_swap_points[:, -1:].min()) new_swapped_points_intensity = recover_points_intensity_by_ratio( to_swap_points_intensity_ratio, swapped_points[:, -1:].max(), swapped_points[:, -1:].min()) # new_to_swap_points = np.concatenate([new_to_swap_points, swapped_points[:, -1:]], axis=1) # new_swapped_points = np.concatenate([new_swapped_points, to_swap_points[:, -1:]], axis=1) new_to_swap_points = np.concatenate([new_to_swap_points, new_to_swap_points_intensity], axis=1) new_swapped_points = np.concatenate([new_swapped_points, new_swapped_points_intensity], axis=1) points_res.append(new_to_swap_points) points_res.append(new_swapped_points) points_res = np.concatenate(points_res, axis=0) points = np.concatenate([remain_points, points_res], axis=0) return gt_boxes, points