import torch import torch.nn as nn from torch.autograd import Function from ...utils import common_utils from . import roiaware_pool3d_cuda def points_in_boxes_cpu(points, boxes): """ Args: points: (num_points, 3) boxes: [x, y, z, dx, dy, dz, heading], (x, y, z) is the box center, each box DO NOT overlaps Returns: point_indices: (N, num_points) """ assert boxes.shape[1] == 7 assert points.shape[1] == 3 points, is_numpy = common_utils.check_numpy_to_torch(points) boxes, is_numpy = common_utils.check_numpy_to_torch(boxes) point_indices = points.new_zeros((boxes.shape[0], points.shape[0]), dtype=torch.int) roiaware_pool3d_cuda.points_in_boxes_cpu(boxes.float().contiguous(), points.float().contiguous(), point_indices) return point_indices.numpy() if is_numpy else point_indices def points_in_boxes_gpu(points, boxes): """ :param points: (B, M, 3) :param boxes: (B, T, 7), num_valid_boxes <= T :return box_idxs_of_pts: (B, M), default background = -1 """ assert boxes.shape[0] == points.shape[0] assert boxes.shape[2] == 7 and points.shape[2] == 3 batch_size, num_points, _ = points.shape box_idxs_of_pts = points.new_zeros((batch_size, num_points), dtype=torch.int).fill_(-1) roiaware_pool3d_cuda.points_in_boxes_gpu(boxes.contiguous(), points.contiguous(), box_idxs_of_pts) return box_idxs_of_pts class RoIAwarePool3d(nn.Module): def __init__(self, out_size, max_pts_each_voxel=128): super().__init__() self.out_size = out_size self.max_pts_each_voxel = max_pts_each_voxel def forward(self, rois, pts, pts_feature, pool_method='max'): assert pool_method in ['max', 'avg'] return RoIAwarePool3dFunction.apply(rois, pts, pts_feature, self.out_size, self.max_pts_each_voxel, pool_method) class RoIAwarePool3dFunction(Function): @staticmethod def forward(ctx, rois, pts, pts_feature, out_size, max_pts_each_voxel, pool_method): """ Args: ctx: rois: (N, 7) [x, y, z, dx, dy, dz, heading] (x, y, z) is the box center pts: (npoints, 3) pts_feature: (npoints, C) out_size: int or tuple, like 7 or (7, 7, 7) max_pts_each_voxel: pool_method: 'max' or 'avg' Returns: pooled_features: (N, out_x, out_y, out_z, C) """ assert rois.shape[1] == 7 and pts.shape[1] == 3 if isinstance(out_size, int): out_x = out_y = out_z = out_size else: assert len(out_size) == 3 for k in range(3): assert isinstance(out_size[k], int) out_x, out_y, out_z = out_size num_rois = rois.shape[0] num_channels = pts_feature.shape[-1] num_pts = pts.shape[0] pooled_features = pts_feature.new_zeros((num_rois, out_x, out_y, out_z, num_channels)) argmax = pts_feature.new_zeros((num_rois, out_x, out_y, out_z, num_channels), dtype=torch.int) pts_idx_of_voxels = pts_feature.new_zeros((num_rois, out_x, out_y, out_z, max_pts_each_voxel), dtype=torch.int) pool_method_map = {'max': 0, 'avg': 1} pool_method = pool_method_map[pool_method] roiaware_pool3d_cuda.forward(rois, pts, pts_feature, argmax, pts_idx_of_voxels, pooled_features, pool_method) ctx.roiaware_pool3d_for_backward = (pts_idx_of_voxels, argmax, pool_method, num_pts, num_channels) return pooled_features @staticmethod def backward(ctx, grad_out): """ :param grad_out: (N, out_x, out_y, out_z, C) :return: grad_in: (npoints, C) """ pts_idx_of_voxels, argmax, pool_method, num_pts, num_channels = ctx.roiaware_pool3d_for_backward grad_in = grad_out.new_zeros((num_pts, num_channels)) roiaware_pool3d_cuda.backward(pts_idx_of_voxels, argmax, grad_out.contiguous(), grad_in, pool_method) return None, None, grad_in, None, None, None if __name__ == '__main__': pass