import torch import torch.nn as nn import torch.nn.functional as F from ...model_utils.basic_block_2d import BasicBlock2D class GeneralizedLSSFPN(nn.Module): """ This module implements FPN, which creates pyramid features built on top of some input feature maps. This code is adapted from https://github.com/open-mmlab/mmdetection/blob/main/mmdet/models/necks/fpn.py with minimal modifications. """ def __init__(self, model_cfg): super().__init__() self.model_cfg = model_cfg in_channels = self.model_cfg.IN_CHANNELS out_channels = self.model_cfg.OUT_CHANNELS num_ins = len(in_channels) num_outs = self.model_cfg.NUM_OUTS start_level = self.model_cfg.START_LEVEL end_level = self.model_cfg.END_LEVEL self.in_channels = in_channels if end_level == -1: self.backbone_end_level = num_ins - 1 else: self.backbone_end_level = end_level assert end_level <= len(in_channels) assert num_outs == end_level - start_level self.start_level = start_level self.end_level = end_level self.lateral_convs = nn.ModuleList() self.fpn_convs = nn.ModuleList() for i in range(self.start_level, self.backbone_end_level): l_conv = BasicBlock2D( in_channels[i] + (in_channels[i + 1] if i == self.backbone_end_level - 1 else out_channels), out_channels, kernel_size=1, bias = False ) fpn_conv = BasicBlock2D(out_channels,out_channels, kernel_size=3, padding=1, bias = False) self.lateral_convs.append(l_conv) self.fpn_convs.append(fpn_conv) def forward(self, batch_dict): """ Args: batch_dict: image_features (list[tensor]): Multi-stage features from image backbone. Returns: batch_dict: image_fpn (list(tensor)): FPN features. """ # upsample -> cat -> conv1x1 -> conv3x3 inputs = batch_dict['image_features'] assert len(inputs) == len(self.in_channels) # build laterals laterals = [inputs[i + self.start_level] for i in range(len(inputs))] # build top-down path used_backbone_levels = len(laterals) - 1 for i in range(used_backbone_levels - 1, -1, -1): x = F.interpolate( laterals[i + 1], size=laterals[i].shape[2:], mode='bilinear', align_corners=False, ) laterals[i] = torch.cat([laterals[i], x], dim=1) laterals[i] = self.lateral_convs[i](laterals[i]) laterals[i] = self.fpn_convs[i](laterals[i]) # build outputs outs = [laterals[i] for i in range(used_backbone_levels)] batch_dict['image_fpn'] = tuple(outs) return batch_dict