import torch from torch import nn from pcdet.ops.bev_pool import bev_pool def gen_dx_bx(xbound, ybound, zbound): dx = torch.Tensor([row[2] for row in [xbound, ybound, zbound]]) bx = torch.Tensor([row[0] + row[2] / 2.0 for row in [xbound, ybound, zbound]]) nx = torch.LongTensor( [(row[1] - row[0]) / row[2] for row in [xbound, ybound, zbound]] ) return dx, bx, nx class DepthLSSTransform(nn.Module): """ This module implements LSS, which lists images into 3D and then splats onto bev features. This code is adapted from https://github.com/mit-han-lab/bevfusion/ with minimal modifications. """ def __init__(self, model_cfg): super().__init__() self.model_cfg = model_cfg in_channel = self.model_cfg.IN_CHANNEL out_channel = self.model_cfg.OUT_CHANNEL self.image_size = self.model_cfg.IMAGE_SIZE self.feature_size = self.model_cfg.FEATURE_SIZE xbound = self.model_cfg.XBOUND ybound = self.model_cfg.YBOUND zbound = self.model_cfg.ZBOUND self.dbound = self.model_cfg.DBOUND downsample = self.model_cfg.DOWNSAMPLE dx, bx, nx = gen_dx_bx(xbound, ybound, zbound) self.dx = nn.Parameter(dx, requires_grad=False) self.bx = nn.Parameter(bx, requires_grad=False) self.nx = nn.Parameter(nx, requires_grad=False) self.C = out_channel self.frustum = self.create_frustum() self.D = self.frustum.shape[0] self.dtransform = nn.Sequential( nn.Conv2d(1, 8, 1), nn.BatchNorm2d(8), nn.ReLU(True), nn.Conv2d(8, 32, 5, stride=4, padding=2), nn.BatchNorm2d(32), nn.ReLU(True), nn.Conv2d(32, 64, 5, stride=2, padding=2), nn.BatchNorm2d(64), nn.ReLU(True), ) self.depthnet = nn.Sequential( nn.Conv2d(in_channel + 64, in_channel, 3, padding=1), nn.BatchNorm2d(in_channel), nn.ReLU(True), nn.Conv2d(in_channel, in_channel, 3, padding=1), nn.BatchNorm2d(in_channel), nn.ReLU(True), nn.Conv2d(in_channel, self.D + self.C, 1), ) if downsample > 1: assert downsample == 2, downsample self.downsample = nn.Sequential( nn.Conv2d(out_channel, out_channel, 3, padding=1, bias=False), nn.BatchNorm2d(out_channel), nn.ReLU(True), nn.Conv2d(out_channel, out_channel, 3, stride=downsample, padding=1, bias=False), nn.BatchNorm2d(out_channel), nn.ReLU(True), nn.Conv2d(out_channel, out_channel, 3, padding=1, bias=False), nn.BatchNorm2d(out_channel), nn.ReLU(True), ) else: self.downsample = nn.Identity() def create_frustum(self): iH, iW = self.image_size fH, fW = self.feature_size ds = torch.arange(*self.dbound, dtype=torch.float).view(-1, 1, 1).expand(-1, fH, fW) D, _, _ = ds.shape xs = torch.linspace(0, iW - 1, fW, dtype=torch.float).view(1, 1, fW).expand(D, fH, fW) ys = torch.linspace(0, iH - 1, fH, dtype=torch.float).view(1, fH, 1).expand(D, fH, fW) frustum = torch.stack((xs, ys, ds), -1) return nn.Parameter(frustum, requires_grad=False) def get_geometry(self, camera2lidar_rots, camera2lidar_trans, intrins, post_rots, post_trans, **kwargs): camera2lidar_rots = camera2lidar_rots.to(torch.float) camera2lidar_trans = camera2lidar_trans.to(torch.float) intrins = intrins.to(torch.float) post_rots = post_rots.to(torch.float) post_trans = post_trans.to(torch.float) B, N, _ = camera2lidar_trans.shape # undo post-transformation # B x N x D x H x W x 3 points = self.frustum - post_trans.view(B, N, 1, 1, 1, 3) points = torch.inverse(post_rots).view(B, N, 1, 1, 1, 3, 3).matmul(points.unsqueeze(-1)) # cam_to_lidar points = torch.cat((points[:, :, :, :, :, :2] * points[:, :, :, :, :, 2:3], points[:, :, :, :, :, 2:3]), 5) combine = camera2lidar_rots.matmul(torch.inverse(intrins)) points = combine.view(B, N, 1, 1, 1, 3, 3).matmul(points).squeeze(-1) points += camera2lidar_trans.view(B, N, 1, 1, 1, 3) if "extra_rots" in kwargs: extra_rots = kwargs["extra_rots"] points = extra_rots.view(B, 1, 1, 1, 1, 3, 3).repeat(1, N, 1, 1, 1, 1, 1) \ .matmul(points.unsqueeze(-1)).squeeze(-1) if "extra_trans" in kwargs: extra_trans = kwargs["extra_trans"] points += extra_trans.view(B, 1, 1, 1, 1, 3).repeat(1, N, 1, 1, 1, 1) return points def bev_pool(self, geom_feats, x): geom_feats = geom_feats.to(torch.float) x = x.to(torch.float) B, N, D, H, W, C = x.shape Nprime = B * N * D * H * W # flatten x x = x.reshape(Nprime, C) # flatten indices geom_feats = ((geom_feats - (self.bx - self.dx / 2.0)) / self.dx).long() geom_feats = geom_feats.view(Nprime, 3) batch_ix = torch.cat([torch.full([Nprime // B, 1], ix, device=x.device, dtype=torch.long) for ix in range(B)]) geom_feats = torch.cat((geom_feats, batch_ix), 1) # filter out points that are outside box kept = ( (geom_feats[:, 0] >= 0) & (geom_feats[:, 0] < self.nx[0]) & (geom_feats[:, 1] >= 0) & (geom_feats[:, 1] < self.nx[1]) & (geom_feats[:, 2] >= 0) & (geom_feats[:, 2] < self.nx[2]) ) x = x[kept] geom_feats = geom_feats[kept] x = bev_pool(x, geom_feats, B, self.nx[2], self.nx[0], self.nx[1]) # collapse Z final = torch.cat(x.unbind(dim=2), 1) return final def get_cam_feats(self, x, d): B, N, C, fH, fW = x.shape d = d.view(B * N, *d.shape[2:]) x = x.view(B * N, C, fH, fW) d = self.dtransform(d) x = torch.cat([d, x], dim=1) x = self.depthnet(x) depth = x[:, : self.D].softmax(dim=1) x = depth.unsqueeze(1) * x[:, self.D : (self.D + self.C)].unsqueeze(2) x = x.view(B, N, self.C, self.D, fH, fW) x = x.permute(0, 1, 3, 4, 5, 2) return x def forward(self, batch_dict): """ Args: batch_dict: image_fpn (list[tensor]): image features after image neck Returns: batch_dict: spatial_features_img (tensor): bev features from image modality """ x = batch_dict['image_fpn'] x = x[0] BN, C, H, W = x.size() img = x.view(int(BN/6), 6, C, H, W) camera_intrinsics = batch_dict['camera_intrinsics'] camera2lidar = batch_dict['camera2lidar'] img_aug_matrix = batch_dict['img_aug_matrix'] lidar_aug_matrix = batch_dict['lidar_aug_matrix'] lidar2image = batch_dict['lidar2image'] intrins = camera_intrinsics[..., :3, :3] post_rots = img_aug_matrix[..., :3, :3] post_trans = img_aug_matrix[..., :3, 3] camera2lidar_rots = camera2lidar[..., :3, :3] camera2lidar_trans = camera2lidar[..., :3, 3] points = batch_dict['points'] batch_size = BN // 6 depth = torch.zeros(batch_size, img.shape[1], 1, *self.image_size).to(points[0].device) for b in range(batch_size): batch_mask = points[:,0] == b cur_coords = points[batch_mask][:, 1:4] cur_img_aug_matrix = img_aug_matrix[b] cur_lidar_aug_matrix = lidar_aug_matrix[b] cur_lidar2image = lidar2image[b] # inverse aug cur_coords -= cur_lidar_aug_matrix[:3, 3] cur_coords = torch.inverse(cur_lidar_aug_matrix[:3, :3]).matmul( cur_coords.transpose(1, 0) ) # lidar2image cur_coords = cur_lidar2image[:, :3, :3].matmul(cur_coords) cur_coords += cur_lidar2image[:, :3, 3].reshape(-1, 3, 1) # get 2d coords dist = cur_coords[:, 2, :] cur_coords[:, 2, :] = torch.clamp(cur_coords[:, 2, :], 1e-5, 1e5) cur_coords[:, :2, :] /= cur_coords[:, 2:3, :] # do image aug cur_coords = cur_img_aug_matrix[:, :3, :3].matmul(cur_coords) cur_coords += cur_img_aug_matrix[:, :3, 3].reshape(-1, 3, 1) cur_coords = cur_coords[:, :2, :].transpose(1, 2) # normalize coords for grid sample cur_coords = cur_coords[..., [1, 0]] # filter points outside of images on_img = ( (cur_coords[..., 0] < self.image_size[0]) & (cur_coords[..., 0] >= 0) & (cur_coords[..., 1] < self.image_size[1]) & (cur_coords[..., 1] >= 0) ) for c in range(on_img.shape[0]): masked_coords = cur_coords[c, on_img[c]].long() masked_dist = dist[c, on_img[c]] depth[b, c, 0, masked_coords[:, 0], masked_coords[:, 1]] = masked_dist extra_rots = lidar_aug_matrix[..., :3, :3] extra_trans = lidar_aug_matrix[..., :3, 3] geom = self.get_geometry( camera2lidar_rots, camera2lidar_trans, intrins, post_rots, post_trans, extra_rots=extra_rots, extra_trans=extra_trans, ) # use points depth to assist the depth prediction in images x = self.get_cam_feats(img, depth) x = self.bev_pool(geom, x) x = self.downsample(x) # convert bev features from (b, c, x, y) to (b, c, y, x) x = x.permute(0, 1, 3, 2) batch_dict['spatial_features_img'] = x return batch_dict